K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2021

\(T=\left(a+b-c\right)-\left(b-a\right)-\left(a-b-c\right)\)

\(=a+b-c-b+a-a+b+c\)

\(=a+b\)

Vậy \(T=a+b\)

T = ( a + b - c ) - ( b - a )- ( a - b - c )

T = a + b - c - b + a - a + b + c

T =(a + a - a ) + ( b - b + b ) + ( -c + c )

T = a + b + 0

T = a + b

29 tháng 6 2017

a) A = a 2   –   2 ab   +   b 2 .                 b) B = m 2 .                       c) C =  8 t 3 .

1 tháng 4 2020

\(T=\frac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\frac{b^2}{\left(b-c\right)\left(b+c\right)-a^2}+\frac{c^2}{\left(c-a\right)\left(c+a\right)-b^2}\)

\(=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}\)

\(=\frac{a^2}{a^2-\left(b+c\right)^2+2bc}+\frac{b^2}{b^2-\left(c+a\right)^2+2ca}+\frac{c^2}{c^2-\left(a+b\right)^2+2ab}\)

\(=\frac{a^2}{a^2-\left(-a\right)^2+2bc}+\frac{b^2}{b^2-\left(-b\right)^2+2ca}+\frac{c^2}{c^2-\left(-c\right)^2+2ab}\)

\(=\frac{a^2}{2bc}+\frac{b^2}{2ca}+\frac{c^2}{2ab}\)

\(=\frac{a^3+b^3+c^3}{2abc}\)

Từ \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\) ( tự chứng minh nhé )

\(\Rightarrow T=\frac{3abc}{2abc}=\frac{3}{2}\)

Vậy T=3/2

25 tháng 12 2023

(a+b-c)+(a+b)-(a-b-c)=a+b-c+a+b-a+b+c=2b

 

25 tháng 12 2023

(a+b-c)+(a+b)-(a-b-c)=a+b-c+a+b-a+b+c=a+3b

a: =b-c-a+c+1-a-b+c

=-2a+1

b: =a-b-c-b+c+a+c-b-a

=c-3b+a

c: =2(a-b-b+c-c+a)

=2(2a-2b)

=4a-4b

31 tháng 7 2023

a) \(\left(b-c\right)-\left(a-c-1\right)-\left(a+b-c\right)\)

\(=b-c-a+c+1-a-b+c\)

\(=c-2a+1\)

b) \(\left(a-b-c\right)-\left(b-c-a\right)+\left(c-b-a\right)\)

\(=a-b-c-b+c+a+c-b-a\)

\(=a-3b+c\)

c) \(2\cdot\left(a-b\right)-2\cdot\left(b-c\right)-2\cdot\left(c-a\right)\)

\(=2\cdot\left(a-b-b+c-c+a\right)\)

\(=2\cdot\left(2a-2b\right)\)

\(=4a-4b\)

15 tháng 9 2015

=(b+c)(ac-a2+bc-ab)+(b+c)(ac-bc+a2-ab)+(c+a)(a+b)(b-c)

=(b+c)(ac-a2+bc-ab+ac-bc+a2-ab)+(a+c)(a+b)(b-c)

=(b+c)(2ac-2ab)-(a+c)(a+b)(c-b)

=(b+c).2a.(c-b)-(a2+ab+ac+bc)(c-b)

=(c-b)(2ab+2ac-a2-ab-ac-bc)

=(c-b)(-a2+ab+ac-bc)=(c-b)[a(b-a)-c(b-a)]

=(c-b)(b-a)(a-c)

Ta có: \(\left(b-c\right)^3+\left(c-a\right)^3-\left(a-b\right)^3-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

\(=\left(b-c+c-a\right)\left[\left(b-c\right)^2-\left(b-c\right)\left(c-a\right)+\left(c-a\right)^2\right]-\left(a-b\right)\left[1+3\left(b-c\right)\left(c-a\right)\right]\)

\(=\left(b-a\right)\left(b^2-3bc+3c^2+ab-3ac+a^2\right)-\left(a-b\right)\left(1+3bc-3ab-3c^2+3ac\right)\)

\(=\left(b-a\right)\left(b^2-3bc+3c^2+ab-3ac+a^2+1+3bc-3ab-3c^2+3ac\right)\)

\(=\left(b-a\right)\left(b^2-2ab+a^2+1\right)\)

\(=\left(b-a\right)^3+\left(b-a\right)\)

\(=b^3-3b^2a+3ba^2-a^3+b-a\)

26 tháng 11 2021

\(\left(-a+b\right)-\left(b+c+a\right)+\left(c-a\right)\\ =-a+b-b-c-a+c-a\\ =-3a\)