Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x(x+1)(x^2+x+1)=42
=> (x^2+x)(x^2+x+1)=42 (1)
Đặt x^2+x=t
=> x^2+x+1=t+1
=> pt (1) có dạng: t(t+1)=42
=> t^2+t=42
=> 4t^2+4t=168
=> 4t^2+4t+1=169
=> (2t+1)^2=(+-13)^2
Xong tìm t và tự tìm nốt x
b) x(x+1)(x+2)(x+3)=24
=> x(x+3)(x+1)(x+2)=24
=> (x^2+3x)(x^2+3x+2)=24
Đặt x^2+3x+1=t
=> x^2+3x=t-1 và x^2+3x+2=t+1
Xong thay vào tìm t và tự tìm x.
a, \(x\left(x+1\right)\left(x^2+x+1\right)=42\)
\(\left(x^2+x\right)\left(x^2+x+1\right)=42\)
Đặt x^2+x=a
=>\(a^2+a=42\)
\(a^2+a-42=0\)
\(a^2+7a-6a-42=0\)
\(\left(a+7\right)\left(a-6\right)=0\)
\(\left(x^2+x+7\right)\left(x^2+x-6\right)=0\)
\(\left(x^2+x+7\right)\left(x-2\right)\left(x+3\right)=0\)
x^2+x+7>0
=>(x-2)(x-3)=0
=>x=2,3
b,x(x+1)(x+2)(x+3)=24
[x(x+3)][(x+1)(x+2)]=24
(x^2+3x)(x^2+3x+2)=24
Đặt x^2+3x=a
=>a(a+2)-24=0
=>a^2+2a-24=0
=>a^2+6a-4a-24=0
=>(a-4)(a+6)=0
=>(x^2+3x-4)(x^2+3x+6)=0
=>(x-1)(x+4)(x^2+3x+6)=0
vì (x^2+3x+6)>0
=>(x-1)(x+4)=0
Bài `1:`
`h)(3/4x-1)(5/3x+2)=0`
`=>[(3/4x-1=0),(5/3x+2=0):}=>[(x=4/3),(x=-6/5):}`
______________
Bài `2:`
`b)3x-15=2x(x-5)`
`<=>3(x-5)-2x(x-5)=0`
`<=>(x-5)(3-2x)=0<=>[(x=5),(x=3/2):}`
`d)x(x+6)-7x-42=0`
`<=>x(x+6)-7(x+6)=0`
`<=>(x+6)(x-7)=0<=>[(x=-6),(x=7):}`
`f)x^3-2x^2-(x-2)=0`
`<=>x^2(x-2)-(x-2)=0`
`<=>(x-2)(x^2-1)=0<=>[(x=2),(x^2=1<=>x=+-2):}`
`h)(3x-1)(6x+1)=(x+7)(3x-1)`
`<=>18x^2+3x-6x-1=3x^2-x+21x-7`
`<=>15x^2-23x+6=0<=>15x^2-5x-18x+6=0`
`<=>(3x-1)(5x-1)=0<=>[(x=1/3),(x=1/5):}`
`j)(2x-5)^2-(x+2)^2=0`
`<=>(2x-5-x-2)(2x-5+x+2)=0`
`<=>(x-7)(3x-3)=0<=>[(x=7),(x=1):}`
`w)x^2-x-12=0`
`<=>x^2-4x+3x-12=0`
`<=>(x-4)(x+3)=0<=>[(x=4),(x=-3):}`
`m)(1-x)(5x+3)=(3x-7)(x-1)`
`<=>(1-x)(5x+3)+(1-x)(3x-7)=0`
`<=>(1-x)(5x+3+3x-7)=0`
`<=>(1-x)(8x-4)=0<=>[(x=1),(x=1/2):}`
`p)(2x-1)^2-4=0`
`<=>(2x-1-2)(2x-1+2)=0`
`<=>(2x-3)(2x+1)=0<=>[(x=3/2),(x=-1/2):}`
`r)(2x-1)^2=49`
`<=>(2x-1-7)(2x-1+7)=0`
`<=>(2x-8)(2x+6)=0<=>[(x=4),(x=-3):}`
`t)(5x-3)^2-(4x-7)^2=0`
`<=>(5x-3-4x+7)(5x-3+4x-7)=0`
`<=>(x+4)(9x-10)=0<=>[(x=-4),(x=10/9):}`
`u)x^2-10x+16=0`
`<=>x^2-8x-2x+16=0`
`<=>(x-2)(x-8)=0<=>[(x=2),(x=8):}`
\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)
Lời giải:
a. $f'(x)\leq 0$
$\Leftrightarrow 3x^2-6x\leq 0$
$\Leftrightarrow x(x-2)\leq 0$
$\Leftrightarrow 0\leq x\leq 2$
b.
$f'(x)=x^2-3x+2=0$
$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$
$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$
$\Leftrightarrow x-2=0$
$\Leftrightarrow x=2$
c.
$g(x)=f(1-2x)+x^2-x+2022$
$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$
$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$
$g'(x)\geq 0$
$\Leftrightarrow -24x^2+2x+5\geq 0$
$\Leftrightarrow (5-12x)(2x-1)\geq 0$
$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$
`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}
a:
ĐKXĐ: \(x\notin\left\{\dfrac{3}{2};1\right\}\)
\(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}=\dfrac{x^2-4x+4}{2x^2-2x-3x+3}\)
=>\(y=\dfrac{x^2-4x+4}{2x^2-5x+3}\)
=>\(y'=\dfrac{\left(x^2-4x+4\right)'\left(2x^2-5x+3\right)-\left(x^2-4x+4\right)\left(2x^2-5x+3\right)'}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{\left(2x-4\right)\left(2x^2-5x+3\right)-\left(2x-5\right)\left(x^2-4x+4\right)}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{4x^3-10x^2+6x-8x^2+20x-12-2x^3+8x^2-8x+5x^2-20x+20}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{2x^3-5x^2-2x+8}{\left(2x^2-5x+3\right)^2}\)
b:
ĐKXĐ: x<>-3
\(y=\left(x+3\right)+\dfrac{4}{x+3}\)
=>\(y'=\left(x+3+\dfrac{4}{x+3}\right)'=1+\left(\dfrac{4}{x+3}\right)'\)
\(=1+\dfrac{4'\left(x+3\right)-4\left(x+3\right)'}{\left(x+3\right)^2}\)
=>\(y'=1+\dfrac{-4}{\left(x+3\right)^2}=\dfrac{\left(x+3\right)^2-4}{\left(x+3\right)^2}\)
y'=0
=>\(\left(x+3\right)^2-4=0\)
=>\(\left(x+3+2\right)\left(x+3-2\right)=0\)
=>(x+5)(x+1)=0
=>x=-5 hoặc x=-1
c:
ĐKXĐ: x<>-2
\(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\)
=>\(y=\dfrac{5x^2+5x-x-1}{x+2}=\dfrac{5x^2+4x-1}{x+2}\)
=>\(y'=\dfrac{\left(5x^2+4x-1\right)'\left(x+2\right)-\left(5x^2+4x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{\left(5x+4\right)\left(x+2\right)-\left(5x^2+4x-1\right)}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{5x^2+10x+4x+8-5x^2-4x+1}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{10x+9}{\left(x+2\right)^2}\)
\(y'\left(-1\right)=\dfrac{10\cdot\left(-1\right)+9}{\left(-1+2\right)^2}=\dfrac{-1}{1}=-1\)
d:
ĐKXĐ: x<>2
\(y=x-2+\dfrac{9}{x-2}\)
=>\(y'=\left(x-2+\dfrac{9}{x-2}\right)'=1+\left(\dfrac{9}{x-2}\right)'\)
\(=1+\dfrac{9'\left(x-2\right)-9\left(x-2\right)'}{\left(x-2\right)^2}\)
=>\(y'=1+\dfrac{-9}{\left(x-2\right)^2}=\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}\)
y'=0
=>\(\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}=0\)
=>\(\left(x-2\right)^2-9=0\)
=>(x-2-3)(x-2+3)=0
=>(x-5)(x+1)=0
=>x=5 hoặc x=-1
TH1: \(x\ge2\)
\(\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=4\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=4\)
\(\Leftrightarrow x^4-5x^2=0\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-\sqrt{5}\left(loại\right)\\x=\sqrt{5}\end{matrix}\right.\)
TH2: \(x< 2\)
\(-\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=4\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=-4\)
\(\Leftrightarrow x^4-5x^2+8=0\)
\(\Leftrightarrow\left(x^2-\dfrac{5}{2}\right)^2+\dfrac{7}{4}=0\) (vô nghiệm)
Vậy \(x=\sqrt{5}\)
1) |x| + x2 - x = x + 10 (1)
Nếu x < 0 thì
|x| = - x
Khi đó (1) <=> x2 - 3x - 10 = 0
Có \(\Delta=\left(-3\right)^2-4.\left(-10\right).1=49>0\)
=> Phương trình 2 nghiệm : \(x_1=\dfrac{3+\sqrt{49}}{2}=5\left(\text{loại}\right);x_2=\dfrac{3-\sqrt{49}}{2}=-2\)
Nếu \(x\ge0\Leftrightarrow\left|x\right|=x\)
Phương trình (1) <=> x2 - x - 10 = 0
\(\Delta=\left(-1\right)^2-4.\left(-10\right).1=41>0\)
=> Phương trình 2 nghiệm \(x_1=\dfrac{1+\sqrt{41}}{2};x_2=\dfrac{1-\sqrt{41}}{2}\left(\text{loại}\right)\)
Vậy tập nghiệm phương trình \(S=\left\{-2;\dfrac{1+\sqrt{41}}{2}\right\}\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+1\right)=42\)
Đặt \(x^2+x=t\)
\(\Rightarrow t\left(t+1\right)=42\)
\(\Leftrightarrow t^2+t-42=0\Rightarrow\left[{}\begin{matrix}t=6\\t=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+x=6\\x^2+x=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-6=0\\x^2+x+7=0\left(vô-nghiệm\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)