K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2021

BT <=> 

\(A=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)

\(=\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{x^2-9-x-3}{MTC}=\frac{x^2-x-12}{MTC}\)

1 tháng 1 2021

A = \(\frac{x+2}{x+3}\)\(-\frac{5}{X^2+X-6}\)\(+\frac{1}{2-X}\)

A= \(\frac{x+2}{x+3}\)\(-\frac{5}{\left(X-2\right)\left(X+3\right)}\)\(-\frac{1}{X-2}\)

A = \(\frac{\left(X+2\right)\left(X-2\right)}{\left(X-2\right)\left(X+3\right)}\)\(-\frac{5}{\left(X-2\right)\left(X+3\right)}\)\(-\frac{X+3}{\left(X-2\right)\left(X+3\right)}\)

A= \(\frac{\left(X+2\right)\left(X-2\right)-5-\left(X+3\right)}{\left(X-2\right)\left(X+3\right)}\)

A= \(\frac{X-4-5-X-3}{\left(X-2\right)\left(X+3\right)}\)

A= \(-\frac{12}{\left(X-2\right)\left(X+3\right)}\)

7 tháng 8 2023

\(Q=\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}+\dfrac{2\sqrt{x}}{x-4}\left(dk:x\ge0,x\ne4\right)\\ =\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ =\dfrac{2\left(2-\sqrt{x}\right)+2+\sqrt{x}-2\sqrt{x}}{4-x}\\ =\dfrac{4-2\sqrt{x}+2+\sqrt{x}-2\sqrt{x}}{4-x}\\ =\dfrac{-3\sqrt{x}+6}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ =\dfrac{-3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{3}{\sqrt{x}+2}\)

\(b,Q=\dfrac{6}{5}\Leftrightarrow\dfrac{3}{\sqrt{x}+2}=\dfrac{6}{5}\Rightarrow15-6\left(\sqrt{x}+2\right)=0\Rightarrow15-6\sqrt{x}-12=0\)

\(\Rightarrow-6\sqrt{x}=-3\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\left(tm\right)\)

Vậy \(x=\dfrac{1}{4}\)thỏa mãn đề bài.

14 tháng 8 2015

M = \(\frac{\frac{x+2}{x+3-5}}{x^2+x-6+\frac{1}{2}-x}\)

14 tháng 8 2015

Chưa chắc đâu Jang Ha Na

Nếu \(M=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)thì sao, Nguyen Minh Thuy nhấn vào nút thứ hai trên thanh công cụ để đánh LaTex

5 tháng 8 2017

Điều kiện : \(x\ge0;x\ne4;x\ne9\)

\(A=\left(\frac{1}{1+\sqrt{x}}\right):\left[\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-2\sqrt{x}-3\sqrt{x}+6}\right]\)

\(A=\frac{1}{1+\sqrt{x}}:\left[\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)

\(A=\frac{1}{1+\sqrt{x}}:\left[\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)

\(A=\frac{1}{1+\sqrt{x}}:\left[\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)

\(A=\frac{1}{1+\sqrt{x}}:\left[\frac{x-9-\left(x-4\right)+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)

\(A=\frac{1}{1+\sqrt{x}}:\left[\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)

\(A=\frac{1}{1+\sqrt{x}}:\frac{1}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{1+\sqrt{x}}\)

20 tháng 9 2019

A=(x​+x​+yyxy​​):(xy​+yx​+xy​−xy​−xyx+y​)

=\frac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\frac{x\left(\sqrt{xy}-x\right)\sqrt{xy}+y\left(\sqrt{xy}+y\right)\sqrt{xy}-\left(x+y\right)\left(\sqrt{xy}+y\right)\left(\sqrt{xy}-x\right)}{\sqrt{xy}\left(\sqrt{xy}+y\right)\left(\sqrt{xy}-x\right)}=x​+yx+xy​+yxy​​:xy​(xy​+y)(xy​−x)x(xy​−x)xy​+y(xy​+y)xy​−(x+y)(xy​+y)(xy​−x)​

=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{x^2y-x^2\sqrt{xy}+xy^2+y^2\sqrt{xy}-y^2\sqrt{xy}+x^2\sqrt{xy}}{xy^2-x^2y}=x​+yx+y​:xy2−x2yx2yx2xy​+xy2+y2xy​−y2xy​+x2xy​​

=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{xy^2-x^2y}{xy^2+x^2y}=x​+yx+y​.xy2+x2yxy2−x2y

=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{xy\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)}{xy\left(x+y\right)}=x​+yx+y​.xy(x+y)xy(y​−x​)(x​+y​)​

=\sqrt{y}-\sqrt{x}=y​−x
 

23 tháng 12 2018

ĐKXĐ: x khác 2 và -3

\(P=\frac{x+2}{x+3}-\frac{5}{x+2x-3x-6}-\frac{1}{x-2}\)

\(P=\frac{\left(x+2\right).\left(x-2\right)}{\left(x+3\right).\left(x-2\right)}-\frac{5}{\left(x-2\right).\left(x+3\right)}-\frac{x+3}{\left(x-2\right).\left(x+3\right)}\)

\(P=\frac{x^2-4-5-x-3}{\left(x-2\right).\left(x+3\right)}=\frac{x^2-x-12}{\left(x+2\right).\left(x+3\right)}=\frac{\left(x-4\right).\left(x+3\right)}{\left(x+2\right).\left(x+3\right)}=\frac{x-4}{x+2}\)

23 tháng 8 2023

a) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\)

\(=\left[-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right]\cdot\left(\sqrt{2}-\sqrt{5}\right)\)

\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)

\(=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)

\(=-\left(2-5\right)\)

\(=-\left(-3\right)\)

\(=3\)

b) Ta có:

\(x^2-x\sqrt{3}+1\) 

\(=x^2-2\cdot\dfrac{\sqrt{3}}{2}\cdot x+\left(\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)

\(=\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)

Mà: \(\left(x-\dfrac{\sqrt{3}}{2}\right)^2\ge0\forall x\) nên

\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)

Dấu "=" xảy ra:

\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow x=\dfrac{\sqrt{3}}{2}\)

Vậy: GTNN của biểu thức là \(\dfrac{1}{4}\) tại \(x=\dfrac{\sqrt{3}}{2}\)

23 tháng 8 2023

a)

\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\\ =\left(-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =\left(-\sqrt{2}-\sqrt{5}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}^2-\sqrt{5}^2\right)\\ =-\left(2-5\right)\\ =-\left(-3\right)\\ =3\)

28 tháng 7 2018

a) đk : \(x\ne2;-3\)

\(A=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{x^2+x-6}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{x^2-4-5-x-3}{x^2+x-6}\)

\(=\frac{x^2-x-12}{x^2+x-6}\)

\(=\frac{x^2-4x+3x-12}{x^2+3x-2x-6}\)

\(=\frac{x\left(x-4\right)+3\left(x-4\right)}{x\left(x+3\right)-2\left(x+3\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)

b)

A>0.

\(\frac{x-4}{x-2}>0\)

th1 : 

x-4>0 và x-2>0

<=> x>4

th2 : x-4 <0 và x-2 < 0

<=> x<2

Vậy để A>0 thì x>4 hoặc x<2

28 tháng 7 2018

a) \(A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\) \(\left(ĐKXĐ:x\ne2;-3\right)\)

\(A=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}+\frac{-1\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)

\(A=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

\(A=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

\(A=\frac{\left(x^2-4x\right)+\left(3x-12\right)}{\left(x+3\right)\left(x-2\right)}\)

\(A=\frac{x\left(x-4\right)+3\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)

\(A=\frac{x-4}{x-2}\)

b) Để  \(A>0\)thì  \(\frac{x-4}{x-2}>0\)

\(\Rightarrow\)(x - 4) ; (x - 2) cùng dấu

* hoặc  \(\hept{\begin{cases}x-4>0\\x-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x>2\end{cases}}\Leftrightarrow x>4\)

* hoặc  \(\hept{\begin{cases}x-4< 0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 4\\x< 2\end{cases}}\Leftrightarrow x< 2\)

Vậy  \(\orbr{\begin{cases}x>4\\x< 2\end{cases}}\)

23 tháng 5 2021

Mình ghi nhầm. \(x=\frac{\sqrt{4+2\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)nhé