Tìm HTLN của biểu thức: \(B=2010-x^4+6x^3-19x^2+30x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Uầy! Mong sao là đúng cho anh em chép chung, chứ sai thì cả lũ... thôi rồi lượm ơi!!!
Đau lòng, đau lòng thằng đệ cÒng!
(6x+1)(2x-5)=12x2-30x+2x-5=12x2-28x-5
(2x+5)2-2x(2x+8)=4x2+20x+25-4x2-16x=4x+25
(3x-5)(2x-1)-(2x+3)(3x+7)+30x=6x2-3x-10x+5=6x2-13x+5
(X-1)2-(x+1)(x-1)=x2-2x+1-x2+1=-2x+2
(3x+2)(9x2-6x+4)-(3+x)(x-3)=27x3+8+9-x2=27x3-x2+17
x = 31 => 30 = x-1
\(\Rightarrow C=x^6-\left(x-1\right)x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+70\)
\(=x^6-\left(x^6-x^5\right)-\left(x^5-x^4\right)-\left(x^4-x^3\right)-\left(x^3-x^2\right)-\left(x^2-x\right)+70\)
\(=x+70=31+70=101\)
\(6x\left(4x-5\right)-24x^2=24x^2-30x-24x^2=-30x\)
ý B
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
\(-B=\left(x^2-3x\right)\left(x^2-3x+10\right)-2010=\left(x^2-3x+5\right)^2-2035\).
Ta có \(x^2-3x+5=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\forall x\).
Do đó \(-B\ge\left(\dfrac{11}{4}\right)^2-2035=\dfrac{-32439}{16}\Rightarrow B\le\dfrac{32439}{16}\).
...