K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2021

Thay x=3 vào phương trình là được

2m.3 - 3 -1 = 2.3 + m 

<=> 6m -4 = 6 + m 

<=> 5m=10

<=>m=2 

Với m bằng 2 thì phương trình có nghiệm x=3 

1 tháng 1 2021

Thay x = 3 vào phương trình '' đặc biệt '' trên ta được ( nói vuii thôi :))

Phương trình tương đương : \(6m-4=6+m\)

\(\Leftrightarrow5m=10\Leftrightarrow m=2\)

Vậy m = 2 

d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)

\(=m^2+2m+1-8m-24\)

\(=m^2-6m-23\)

\(=m^2-6m+9-32\)

\(=\left(m-3\right)^2-32\)

Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)

\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)

Ta có: \(x_1x_2=\dfrac{m+3}{2}\)

\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)

\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)

21 tháng 8 2021

cậu có thể giúp mình cả bài được không,cảm ơn cậu

1, 2mx−1x−1=m−2 (x≠1)(x≠1)

⇔ 2mx−1=(m−2)(x−1)

⇔ 2mx−1=x(m−2)−m+2

⇔ x.(m+2)=−m+3x.(m+2)=−m+3

Nếu m+2=0m+2=0 hay m=−2m=−2 thì 0x=5

⇒ PT vô nghiệm

Nếu m+2≠0 hay m≠−2 thì x=3mm+2

2, 2x2x²−5x+3+9x2x²−x−3=6

⇔ 2x(3x−2).(x−1)+9x(3x−2).(x+1)=6

⇔ 2x(x+1)(3x−2).(x−1)(x+1)+9x(x−1)(3x−2).(x+1)(x−1)=6

⇒ 2x(x+1)+9x(x−1)=6(3x−2)(x+1)(x−1)

⇔ 11x²−7x=18x³−12x²−18x+12

⇔ 18x³−13x²−11x+12=0

9 tháng 3 2017

phần b m>2

9 tháng 3 2017

phần a ko hiểu đề

21 tháng 7 2015

a) \(\Delta\)' = (-m)2 - m(m + 1) = m- m2 - m = - m

Để (*) có 2 nghiệm phân biệt <=> \(\Delta\)\(\ge\) 0 <=> - m \(\ge\) 0 <=> m \(\le\) 0

b) Với m \(\le\) 0 thì (*) có 2 nghiệm x1 ; x2. Theo hệ thức Vi ét có: 

x+ x2 = 2m ; x1. x2 = m(m +1)

Để x1 + 2x2 = 0 <=> x1 = -2x2

=> x1 + x2 = -2x2 + x2 = -x2 = 2m => x2 = -2m và x1 = -2. (-2m) = 4m

Khi đó, x1.x2 = -8m = m.(m+1) => 9m2 + m = 0 <=> m(m +9) = 0 <=> m = 0 (TM) hoặc m  =-9  (không TM ) 

Vậy m = 0 thì...

10 tháng 7 2016

can tui giup k

NM
6 tháng 9 2021

ta có : \(x^2-2mx+m-1=0\)

Để có hai nghiệm phân biệt nên ta có : \(\Delta'=m^2-m+1>0\forall m\)

khi đó hai nghiệm là :

\(x_1=m-\sqrt{m^2-m+1}< x_2=m+\sqrt{m^2-m+1}< 2\)

\(\Leftrightarrow\sqrt{m^2-m+1}< 2-m\Leftrightarrow\hept{\begin{cases}m\le2\\m^2-m+1< m^2-4m+4\end{cases}}\Leftrightarrow m< 1\)

vậy m<1