mn ơi giúp mình với ạ
cho các số thực a,b,c thõa mãn a*a+b*b+c*c=3 và a+b+c+a*b+b*c+c*a=6
tính giá trị của A=(a^30+b^4+c^1975)/(a^30+b^4+c^2019)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Theo BĐT Cauchy ta có:
\(\sqrt{a.1}\le\dfrac{a+1}{2}\)
\(\sqrt{b.1}\le\dfrac{b+1}{2}\)
\(\sqrt{c.1}\le\dfrac{c+1}{2}\)
\(\sqrt{ab}\le\dfrac{a+b}{2}\)
\(\sqrt{bc}\le\dfrac{b+c}{2}\)
\(\sqrt{ca}\le\dfrac{c+a}{2}\)
\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le\dfrac{3\left(a+b+c\right)+3}{2}=\dfrac{3.3+3}{2}=6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Mà ta có: \(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=6\)
\(\Rightarrow a=b=c=1\)
\(M=\dfrac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2023}}=\dfrac{1^{30}+1^4+1^{1975}}{1^{30}+1^4+1^{2023}}=1\)
bạn khá thông minh
nhưg sorry mình k thể k cho bb đc nha
Chiều rộng là : 15 : ( 5 - 3 ) x 3 = 22,5 m
Chiều dài là : 15 + 22,5 = 37,5 m
Chu vi là : ( 37,5 + 22,5 ) x 2 = 120 m
Diện tích là : 37,5 x 22,5 = 843,75 m2
Ta có: (a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c... (a+b+c)=(a+b+c)/(a+b+c)=1
=>(a+b-c)/c=1 => a+b-c=c =>a+b=2c (1)
Tương tự: (b+c-a)/a=1 =>b+c=2a (2)
(c+a-b)/b=1 =>c+a=2b (3)
Thay (1), (2), (3) vào P, ta có:
P=(a+b)/a . (b+c)/b .(a+c)/c=2c/a.2a/b.2b/c=2.2.2=8. Hết nhưng sách thì chia ra hai trường hợp như sau:
Từ giả thiết, suy ra:
(a+b-c)/c+2=(b+c-a)/a+2=(c+a-b)/b+2
<=> (a+b+c)/c=(b+c+a)/a=(c+a+b)/b
Xét 2 trường hợp:
Nếu a+b+c=0 => (a+b)/a.(b+c)/b.(c+a)/c=((-c)(-a)(-b))/a...
Nếu a+b+c khác 0 =>a=b=c =>P=2.2.2=8
Trước hết ta c/m bổ đề sau:
Với mọi số thực dương x;y ta luôn có:
\(x^4+y^4\ge xy\left(x^2+y^2\right)\)
Thật vậy, BĐT đã cho tương đương:
\(x^4-x^3y+y^4-xy^3\ge0\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^3-y^3\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\) (luôn đúng)
Áp dụng bổ đề trên ta có:
\(T\le\dfrac{a}{bc\left(b^2+c^2\right)+a}+\dfrac{b}{ac\left(a^2+c^2\right)+b}+\dfrac{c}{ab\left(a^2+b^2\right)+c}\)
\(\Rightarrow T\le\dfrac{a^2}{abc\left(b^2+c^2\right)+a^2}+\dfrac{b^2}{abc\left(a^2+c^2\right)+b^2}+\dfrac{c^2}{abc\left(a^2+b^2\right)+c^2}\)
\(\Rightarrow T\le\dfrac{a^2}{a^2+b^2+c^2}+\dfrac{b^2}{a^2+b^2+c^2}+\dfrac{c^2}{a^2+b^2+c^2}=1\)
\(T_{max}=1\) khi \(a=b=c=1\)
Giả sử $a\leq b\leq c\Rightarrow 2\leq c\leq 4$
$P=a^2+b^2+ab+c(a+b+c)=(a+b)^2-ab+6c\leq (6-c)^2+6c=c^2-6c+36=(c-3)^2+27$
Vì $2\leq c\leq 4$ nên $-1\leq c-3\leq 1\Rightarrow (c-3)^2\leq 1$
Vậy MaxP=28 khi a,b,c là hoán vị của 0,2,4
Ta có bất đẳng thức: \(ab+bc+ca\le a^2+b^2+c^2;\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\).
Đẳng thức xảy ra khi và chỉ khi a = b = c.
Kết hợp với \(a^2+b^2+c^2=3\) ta có \(a+b+c+ab+bc+ca\le6\).
Mặt khác theo bài ra ta có đẳng thức xảy ra, do đó ta phải có: \(\left\{{}\begin{matrix}a=b=c\\a^2+b^2+c^2=3\\a+b+c\ge0\end{matrix}\right.\Leftrightarrow a=b=c=1\).
Thay vào A ta tính được \(A=1\).