K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2019

a. Không gian mẫu gồm 10 phần tử:

Ω = {1, 2, 3, …, 10}

b. A, B, C "là các biến cố".

+ A: "Lấy được thẻ màu đỏ"

⇒ A = {1, 2, 3, 4, 5}

+ B: "Lấy được thẻ màu trắng"

⇒ B = {7, 8, 9, 10}

+ C: "Lấy được thẻ ghi số chắn".

⇒ C = {2, 4, 6, 8, 10}

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Kí hiệu \({X_1},{X_2},...,{X_7}\) là bảy thẻ màu xanh, \({D_1},{D_2},...,{D_5}\) là 5 thẻ màu đỏ và \({V_1},{V_2}\) là hai thẻ màu vàng.

Ta có không gian mẫu là \(\Omega  = \left\{ {{X_1},{X_2},...,{X_7},{D_1},{D_2},...,{D_5},{V_1},{V_2}} \right\}\).

b) Ta có \(A = \left\{ {{D_1},{D_2},{D_3},{D_4},{D_5},{V_1},{V_2}} \right\},B = \left\{ {{X_2},{X_3},{D_2},{D_3},{V_2}} \right\}\).

18 tháng 9 2017

Không gian mẫu Ω={1,2,..30}. kí hiệu A là biến cố “ thẻ lấy ra ghi số 6”, B là biến cố “thẻ lấy ra ghi số chia hết cho 5”

A={6}, n(A) =1,n(Ω) = 30

⇒P(A) =1/30

Chọn đáp án A

4 tháng 5 2018

B = {5,10,15,20,25,30}, n(B) = 6

⇒P(B) =6/30 =1/5

Chọn đáp án là B

Nhận xét: học sinh có thể nhầm với số thẻ và số ghi trên thẻ, hoặc vận dụng nhầm công thức P(A) =(n(Ω))/(n(A)) dẫn đến các phương án khác còn lại.

DD
28 tháng 5 2022

Có 6 cách chọn bi xanh. 

Với mỗi cách chọn bi xanh có 6 cách chọn bi vàng để khác số. 

Với mỗi cách chọn đó ta lại có 6 cách chọn bi đỏ để khác số với 2 quả vừa chọn. 

Xác suất cần tìm là: \(\dfrac{6^3}{C_{21}^3}=\dfrac{108}{665}\).

22 tháng 8 2023

a) Tập hợp mô tả biến cố AB:
`AB: { (1, 5), (2, 4), (3, 3) }`

P(AB) = số phần tử trong AB / số phần tử trong không gian mẫu
`P(AB) = 3 / (3 * 5) = 3/15 = 1/5`

b) Một biến cố khác rỗng và xung khắc với cả hai biến cố A và B là biến cố "Tổng các số ghi trên 2 thẻ lớn hơn 6".

$HaNa$

25 tháng 7 2017

Đáp án D

Các trường hợp thẻ lấy thỏa mãn đề bài là 3, 9, 15

Suy ra xác suất lấy được thẻ đó là  3 20 = 0 , 15 .

27 tháng 5 2022

95/132

DD
28 tháng 5 2022

Không gian mẫu \(\Omega\) chọn 3 thẻ từ 100 thẻ. \(n\left(\Omega\right)=C_{100}^3\).

Gọi \(x,y,z\) là ba số lấy ra được thỏa mãn. 

Biến cố A là biến cố chọn được các số \(x,y,z\) đó. 

Đặt \(A_k=\left\{\left(x,y,z\right)|x,y,z\in\left\{1,2,...,100\right\},1\le x< y< z=k,x+y>z\right\}\).

Khi đó \(n\left(A\right)=\left|A_1\right|+\left|A_2\right|+...+\left|A_{100}\right|\). Dễ thấy \(\left|A_1\right|=\left|A_2\right|=\left|A_3\right|=0\).

Ta sẽ tính các giá trị của \(\left|A_k\right|\).

TH1: \(k=2m\).

Xét \(1\le x\le m\). suy ra \(k=2m\ge2x\Leftrightarrow k-x\ge x\)

\(x+y>z\Rightarrow y>k-x\Rightarrow k-x+1\le y\le z-1\)

Số cách chọn \(y\) là \(\left(k-1\right)-\left(k-x+1\right)+1=x-1\) cách. 

Xét \(x>m\)\(x+y>2x>2m=z\) (thỏa mãn bđt tam giác) 

suy ra \(x+1\le y\le z-1=2m-1\).

Số cách chọn \(y\) là: \(\left(2m-1\right)-\left(x+1\right)+1=2m-x+1\) cách. 

Tổng số cách là:

 \(\sum\left|A_k\right|=\sum_{i=1}^m\left(i+1\right)+\sum_{i=m+1}^{2m-1}\left(2m-i+1\right)=\left(m-1\right)^2\) cách. 

TH2: \(k=2m+1\).

Ta làm tương tự như trên, xét với \(1\le x\le m\) và \(x>m\).

Tổng số cách là: \(\sum\left|A_k\right|=\sum_{i=1}^m\left(i-1\right)+\sum_{i=m+1}^{2m}\left(2m-i\right)=m^2-m\) cách. 

Vậy \(n\left(A\right)=\sum_{m=2}^{49}m\left(m-1\right)+\sum_{m=2}^{50}\left(m-1\right)^2=79625\) (cách).

\(P\left(A\right)=\dfrac{n\left(\Omega\right)}{n\left(A\right)}=\dfrac{65}{132}\).