Phân tích đa thức thành nhân tử: x4 + 64y4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x^2-9-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)\left(1-x^2\right)\)
\(=\left(1-x\right)\left(1+x\right)\left(x-3\right)\left(x+3\right)\)
b: \(x^2\left(x-y\right)+y^2\left(y-x\right)\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\cdot\left(x+y\right)\)
c: \(x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)
d: \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
e: \(3x^2-4x-4\)
\(=3x^2-6x+2x-4\)
\(=3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(3x+2\right)\)
g: \(x^4+64y^4\)
\(=x^4+16x^2y^2+64y^4-16x^2y^2\)
\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)
\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)
h: \(a^2+b^2+2a-2b-2ab\)
\(=a^2-2ab+b^2+2a-2b\)
\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left(a-b+2\right)\)
i: \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2\)
\(=\left(x+1-y+3\right)^2\)
\(=\left(x-y+4\right)^2\)
k: \(x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x+1\right)\left(x-1\right)^2\)
x4+4 = (x2)2+22 = x4 + 2.x2.2 + 4 – 4x2
= (x2 + 2)2 – (2x)2 = (x2-2x+2)(x2+2x+2)
Ta có: \(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
x4 + 4
= (x2)2 + 22
= x4 + 2.x2.2 + 4 – 4x2
(Thêm bớt 2.x2.2 để có HĐT (1))
= (x2 + 2)2 – (2x)2
(Xuất hiện HĐT (3))
= (x2 + 2 – 2x)(x2 + 2 + 2x)
x 4 - 5 x 2 + 4 = x 4 - 4 x 2 - x 2 + 4 = x 4 - 4 x 2 - x 2 - 4 = x 2 x 2 - 4 - x 2 - 4 = x 2 - 4 x 2 - 1 = x + 2 x - 2 x + 1 x - 1
Sửa đề: x^4+4y^4
=x^4+4x^2y^2+4y^4-4x^2y^2
=(x^2+2y^2)^2-4x^2y^2
=(x^2-2xy+2y^2)(x^2+2xy+2y^2)
x⁴ - 2x³ + 2x - 1
= (x⁴ - 1) - (2x³ - 2x)
= (x² - 1)(x² + 1) - 2x(x² - 1)
= (x² - 1)(x² + 1 - 2x)
= (x - 1)(x + 1)(x² - 2x + 1)
= (x - 1)(x + 1)(x - 1)²
= (x - 1)³(x + 1)
Ta có:
\(\left(x^4+2x^3-x-2\right)+\left(4x^2+4x+4\right)\)
\(=\left[\left(x^4+2x^3\right)-\left(x+2\right)\right]+4\left(x^2+x+1\right)\)
\(=\left[x^3\left(x+2\right)-\left(x-2\right)\right]+4\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+1\right)+4\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[\left(x-1\right)\left(x+2\right)+4\right]\)
\(=\left(x^2+x+1\right)\left(x^2+x+2\right)\)
Có:\(x^4+64y^4\)
\(=\left(x^4+16x^2y^2+64y^4\right)-16x^2y^2\)
\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)
\(=\left(x^2+4xy+8y^2\right)\left(x^2-4xy+8y^2\right)\)
Linz
= 64y4 + 32xy3 + 8y2x2 - 32xy3 -16x2y2 - 4x3y + 8x2y2 +4x3y +x4
= 8y2 ( 8y2 + 4xy + x2 ) - 4xy ( 8y2 + 4xy + x2 ) + x2 ( 8y2 + 4xy + x2 )
= ( 8y2 - 4xy + x2 ) ( 8y2 + 4xy + x2 )