cho ab+1/b = bc+1/c = ac+1/a cmr a=b=c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\frac{a}{ab+a+1}\)\(+\)\(\frac{b}{bc+b+1}\)\(+\)\(\frac{c}{ac+c+1}\)
= \(\frac{a}{ab+a+1}\)\(+\)\(\frac{ab}{a\left(bc+b+1\right)}\)\(+\)\(\frac{abc}{ab\left(ac+c+1\right)}\)
= \(\frac{a}{ab+a+1}\)\(+\)\(\frac{ab}{abc+ab+a}\)\(+\)\(\frac{abc}{abc.a+abc+ab}\)
Vì abc = 1 nên:
A = \(\frac{a}{ab+a+1}\)\(+\)\(\frac{ab}{ab+a+1}\)\(+\)\(\frac{1}{ab+a+1}\)
= \(\frac{a+ab+1}{ab+a+1}\)= 1
\(c\left(1+ab\right)\le c\left(1+\dfrac{a^2+b^2}{2}\right)=c\left(1+\dfrac{1-c^2}{2}\right)=1-\dfrac{1}{2}\left(c-1\right)^2\left(c+2\right)\le1\)
\(\Rightarrow c^2\left(1+ab\right)\le c\Rightarrow\dfrac{c}{1+ab}\ge c^2\)
Hoàn toàn tương tự ta có: \(\dfrac{a}{1+bc}\ge a^2\) ; \(\dfrac{b}{1+ac}\ge b^2\)
Cộng vế: \(VT\ge a^2+b^2+c^2=1\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị
Cách 2:
Áp dụng BĐT Bunhiacopxky:
\(\text{VT}[a(1+bc)+b(1+ac)+c(1+ab)]\geq (a+b+c)^2\)
\(\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{a+b+c+3abc}\)
Ta sẽ CM:
\(\frac{(a+b+c)^2}{a+b+c+3abc}\geq 1\)
\(\Leftrightarrow 1+2(ab+bc+ac)\geq a+b+c+3abc\)
Vì $a^2+b^2+c^2=1\Rightarrow a,b,c\leq 1$
$\Rightarrow (a-1)(b-1)(c-1)\leq 0$
$\Leftrightarrow 1+ ab+bc+ac\geq a+b+c+abc(1)$
Áp dụng BĐT AM-GM:
$ab+bc+ac\geq 3\sqrt[3]{a^2b^2c^2}\geq 3\sqrt[3]{a^2b^2c^2.abc}=3abc\geq 2abc(2)$
Từ $(1);(2)\Rightarrow 1+2(ab+bc+ac)\geq a+b+c+3abc$
Ta có đpcm
Dấu "=" xảy ra khi $(a,b,c)=(1,0,0)$ và hoán vị.
\(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ac+1}{a}\)
\(\Leftrightarrow a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
\(\Leftrightarrow\hept{\begin{cases}a-c=\frac{1}{c}-\frac{1}{b}\\b-c=\frac{1}{a}-\frac{1}{c}\\c-a=\frac{1}{b}-\frac{1}{a}\end{cases}\Leftrightarrow\hept{\begin{cases}a-c=\frac{b-c}{bc}\left(1\right)\\b-c=\frac{c-a}{ca}\left(2\right)\\c-a=\frac{a-b}{ab}\left(3\right)\end{cases}}}\)
Nhân (1);(2) và (3) theo vế \(\left(a-c\right)\left(b-c\right)\left(c-a\right)=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{a^2b^2c^2}\)
\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(1-\frac{1}{a^2b^2c^2}\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)
\(\Rightarrow a=b\)hoặc \(b=c\)hoặc \(c=a\)
Với \(a=b\)thay vào \(\left(1\right)\)ta đc:\(b=c\Rightarrow a=b=c\)
Với \(b=c\)thay vào \(\left(2\right)\)ta đc\(c=a\Rightarrow a=b=c\)
Với \(c=a\)thay vào\(\left(3\right)\)ta đc \(a=b\Rightarrow a=b=c\)
\(\Rightarrow a=b=c\)
Nguồn:https://olm.vn/hoi-dap/detail/50048198023.html