K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2020

13452 - 67 x Y = 12648 

              67 x Y = 13452 - 12648 

              67 x Y =  804 

                     Y = 804 : 67 

                     Y = 12 nha chúc hok tốt     

30 tháng 12 2020

13452-67x Y=12648

13385x Y=12648

             Y=13385:12648

             Y=1,058

15 tháng 2 2020

Ta có: \(\frac{x+2}{y+10}\)\(=\)\(\frac{1}{5}\)\(\Rightarrow\)\(5\left(x+2\right)=y+10\)(1)

             \(y-3x=2\)\(\Rightarrow\)\(y+2=3x\)                              (2)

Thay (2) vào (1) ta có:

\(5\left(x+2\right)=\left(y+2\right)+8\)

\(5x+10=3x+8\)

\(5x-3x=8-10\)

\(2x=-2\)

\(x=-2:2\)

\(x=-1\)

Vậy: x=-1

Chúc bạn làm bài tốt!

23 tháng 10 2021

\(\text{x+5+y+5+x+5+y+5}=2\left(x+y\right)+20\)

\(=2.20+20\)

\(=60\)

x+5+y+5+x+5+y+5 = x+y+x+y+5x4 = 20 + 20 + 20 = 20 x 3 = 60

20 tháng 8 2023

c)\(\dfrac{3}{8}\times\dfrac{5}{8}+y=\dfrac{5}{4}\) 

   \(\dfrac{15}{64}+y=\dfrac{5}{4}\) 

           \(y=\dfrac{5}{4}-\dfrac{15}{64}\) 

           \(y=\dfrac{65}{64}\)

d, \(\dfrac{3}{8}+\dfrac{5}{8}\times y=\dfrac{5}{4}\) 

          \(\dfrac{5}{8}\times y=\dfrac{5}{4}-\dfrac{3}{8}\) 

          \(\dfrac{5}{8}\times y=\dfrac{7}{8}\) 

                 \(y=\dfrac{7}{8}:\dfrac{5}{8}\) 

                \(y=\dfrac{7}{5}\)

   

21 tháng 8 2023

 a, 3/4 x y = 3/5 + 3/10   

3/4 x y = 9/10

y = 9/10 : 3/4

y = 6/5

b, 3/5 : y = 3/4 - 2/5

3/5 : y = 7/20

y = 3/5 : 7/20 

y = 12/7

 

2 tháng 8 2015

CM đẳng thức hay tìm x,y vậy 

2 tháng 8 2015

Mình sẽ làm theo đề bài của mình nếu đúng thì ... nha 

Biến đổi vế phải  ta có :

( x + y) [ ( x - y)^2 + xy ] = ( x + y)( x^2 - 2xy + y^2 + xy)

                                      = ( x+  y)( x^2 - xy+ y^2)

                                       = x^3 + y^3

VẬy VT  = VP đẳng thức được CM 

   

6 tháng 12 2015

Ta có:

\(x^3+y^3+z^3=3xyz\)

nên  \(x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x^3+y^3\right)+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2+\left(x+y\right).z+z^2\right]-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)=0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)\right]=0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Leftrightarrow^{x+y+z=0}_{x=y=z}\)

Do đó:

\(M=\left(2-\frac{x}{y}\right)^{2013}+\left(3-\frac{2x}{z}\right)^{2014}+\left(4-\frac{3z}{x}\right)^{2015}\)

\(=\left(2-\frac{y}{y}\right)^{2013}+\left(3-\frac{2z}{z}\right)^{2014}+\left(4-\frac{3x}{x}\right)^{2015}\)

\(=\left(2-1\right)^{2013}+\left(3-2\right)^{2014}+\left(4-3\right)^{2015}\)

\(M=1^{2013}+1^{2014}+1^{2015}=1+1+1=3\)

                                                    ----------------------------------------------------