K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2020

A = 2^0 + 2^1 + 2^2 + 2^3 + ... + 2^100

A = 1 + 2^1 + 2^2 + 2^3 + ... + 2^100

2A = 2 + 2^2 + 2^3 + ... + 2^101

2A - A = 2^101 - 1

A = 2^101-1

Ta có : 2^101 > 2^101-1 nên A < B

GH
6 tháng 8 2023

Bài 1: 

a) 02002 < 02023

 

b) 20220 = 20230

 

c) 549 < 5510

d) ( 4 + 5 )3 > 4+ 52

đ) 92 - 32 > ( 9 - 3 )2

Bài 2:

a) 32 x 43 - 32 + 333

= 9 x 64 - 9 + 333

= 576 - 9 + 333

= 567 + 333

= 900

b) 5 x 43 + 24 x 5 + 410

= 5 x 64 + 24 x 5 + 1

= 5 x ( 64 + 24 ) + 1

= 5 x 88 + 1

= 440 + 1

= 441

c) 23 x 42 + 32 x 5 - 40 x 12023

= 8 x 16 + 9 x 5 - 40 x 1

= 128 + 45 - 40

= 133

6 tháng 8 2023

Bài 1 :

a) \(0^{2002}=0;0^{2023}=0\Rightarrow0^{2002}=0^{2023}\)

b) \(2022^0=1;2023^0=1\Rightarrow2022^0=2023^0\)

c) \(54^9< 55^9;55^9< 55^{10}\Rightarrow54^9< 55^{10}\)

d) \(\left(4+5\right)^3>\left(4+5\right)^2;\left(4+5\right)^2>4^2+5^2\Rightarrow\left(4+5\right)^3>4^2+5^2\)

đ) \(9^2-3^2=81-9=82;\left(9-3\right)^2=6^2=36\Rightarrow9^2-3^2>\left(9-3\right)^2\)

27 tháng 9 2019

\(A=2^0+2^1+2^2+2^3+...+2^{2010}\)

\(A=1+2+2^2+2^3+...+2^{2010}\)

\(2A=2+2^2+2^3+...+2^{2011}\)

\(2A-A=\left[2+2^2+2^3+...+2^{2011}\right]-\left[1+2+2^2+2^3+...+2^{2010}\right]\)

\(A=2^{2011}-1\)

Mà \(B=2^{2011}-1\)

=> A = B

27 tháng 9 2019

Ta có: A=\(2^0+2^1+2^2+2^3+...+2^{2010}\)

          2A=\(2^1+2^2+2^3+2^4+...+2^{2011}\)

     2A-A hay A=\(2^{2011}-2^0\)

                       =\(2^{2011}-1\)

Vì \(2^{2011}-1=2^{2011}-1\)

\(\Rightarrow\)A=B

Hok tốt nha!!!

22 tháng 10 2017
 

so sánh \A và B :

A= 2 mũ 0 + 2 mũ 1 + 2 mũ 2 + ... + 2 mũ 1994 và B= 2 mũ 1995

Dễ mà tự làm nhé!!!!

  
22 tháng 10 2017

A = 20 + 2 + 22 + ... + 21994

2A = 2 + 22 + 23 + ... + 21995

2A - A = (  2 + 22 + 23 + ... + 21995 ) - ( 20 + 2 + 22 + ... + 21994 )

A = 21995 - 20

Mà B = 21995

\(\Rightarrow\)A < B

1 tháng 7 2019

2B= 22+23+24+...+2100

=>B=2B-B=22+23+24+...+2100-(21+22+23+...+299)=2100-2<2101-1

1 tháng 7 2019

\(B=2^1+2^3+2^5+...+2^{99}\)

\(2^2B=2^2\left(2+2^3+2^5+...+2^{99}\right)\)

\(4B=2^3+2^5+2^7+...+2^{101}\)

\(4B-B=\left(2^3+2^5+2^7+...+2^{101}\right)-\left(2^1+2^3+2^5+..+2^{99}\right)\)

\(3B=2^{101}-2\)

\(B=\frac{2^{101}-2}{3}\) < \(F=2^{101}-2\)

28 tháng 8 2019

Ko ghi đề

\(2A=2+2^2+...+2^{101}\\ 2A-A=2^{101}-1\\ =>A=2^{101}-1\)

Mấy cái khác cg lm như v (b thì 3b)

Nhớ đúng mk nhá

6 tháng 5 2019

Chỗ 4 mũ 2/3.5 x ... x 59 mũ 2/58.60 nha

6 tháng 5 2019

a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)

                                                                                   \(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)

=> đpcm

Study well ! >_<

5 tháng 5 2019

\(A=\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{2018^2}\)

\(< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2017\cdot2018}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}< \frac{3}{4}\)

15 tháng 7 2019

So sánh : và \(72^{44}-72^{43}\)

Ta có :

       \(72^{45}-72^{44}=72^{44}\left(72-1\right)\)

       \(72^{44}-72^{43}=72^{43}\left(72-1\right)\)

Vì 7244 > 7243 => 7244 (72-1)  > 7243 (72-1)

                    hay 7245 -7244 > 7244 - 7243 

            

          

15 tháng 7 2019

Nhanh hộ mọi người😦😦😦😦😦😨