chứng tỏ A chia hết cho 30 biết A=3 + 3^3 + 3^5 + ... + 3^97 + 3^99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 3+ 3^3 + 3^5 + 3^7 + ... + 3^97 + 3^99
A=(3+3^3)+(3^5+3^7)+.......+(3^97+3^99)
=30+3^5.(3+3^3)+........+3^97.(3+3^3)
=30+3^5.30+......+3^97.30
\(\Rightarrow\)\(A⋮30\)(Vì các số hạng của tổng \(⋮\)30)
hok tốt!
Lời giải:
$A=1+5+5^2+5^3+...+5^{98}+5^{99}$
$=1+(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^{97}+5^{98}+5^{99})$
$=1+5(1+5+5^2)+5^4(1+5+5^2)+...+5^{97}(1+5+5^2)$
$=1+(1+5+5^2)(5+5^4+...+5^{97})$
$=1+31(5+5^4+....+5^{97})$
$\Rightarrow A$ chia $31$ dư $1$
B3
3^x+2 +3^x=10
=> 3^x.3^2+3^x=10
=> 3^x .(9+1)=10
=>3^x.10=10
=>3^x=1
Vì chỉ có lũy thừa có số mũ bằng 0 thì lũy thừa đó bằng 1
=>x=0
Mk chỉ làm B3 thui mấy bài kia dài lắm k cho mk nha
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
\(A=3+3^2+...+3^{101}+3^{102}\) (thêm 33 bi sót)
\(\Rightarrow A+1=1+3+3^2+...+3^{101}+3^{102}\)
\(\Rightarrow A+1=\dfrac{3^{102+1}-1}{3-1}\)
\(\Rightarrow A+1=\dfrac{3^{103}-1}{2}\)
\(\Rightarrow A=\dfrac{3^{103}-1}{2}-1\)
\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\)
mà \(\left(3^{102}-1\right)\) không chia hết cho 2;4;5
\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\) không chia hết cho 2;4;5
\(\Rightarrow A\) không chia hết cho 40 \(\left(vì40=2.4.5\right)\)
\(B=4+4^2+4^3+...+4^{99}\)
\(\Rightarrow B=4\left(1+4^1+4^2\right)+4^4\left(1+4^1+4^2\right)...+4^{97}\left(1+4^1+4^2\right)\)
\(\Rightarrow B=4.21+4^4.21+...+4^{97}.21\)
\(\Rightarrow B=21\left(4+4^4+...+4^{97}\right)⋮21\)
\(\Rightarrow dpcm\)