K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2020

giúp mình với 

đang cần gấp

30 tháng 12 2020

A = 3+ 3^3 + 3^5 + 3^7 + ... + 3^97 + 3^99

A=(3+3^3)+(3^5+3^7)+.......+(3^97+3^99)

=30+3^5.(3+3^3)+........+3^97.(3+3^3)

=30+3^5.30+......+3^97.30

\(\Rightarrow\)\(A⋮30\)(Vì các số hạng của tổng \(⋮\)30)

hok tốt!

AH
Akai Haruma
Giáo viên
20 tháng 7 2024

Lời giải:

$A=1+5+5^2+5^3+...+5^{98}+5^{99}$

$=1+(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^{97}+5^{98}+5^{99})$

$=1+5(1+5+5^2)+5^4(1+5+5^2)+...+5^{97}(1+5+5^2)$

$=1+(1+5+5^2)(5+5^4+...+5^{97})$

$=1+31(5+5^4+....+5^{97})$

$\Rightarrow A$ chia $31$ dư $1$

6 tháng 12 2016

B3

3^x+2 +3^x=10

=> 3^x.3^2+3^x=10

=> 3^x .(9+1)=10

​=>3^x.10=10

=>3^x=1

Vì chỉ có lũy thừa có số mũ bằng 0 thì lũy thừa đó bằng 1 

=>x=0

Mk chỉ làm B3 thui mấy bài kia dài lắm k cho mk nha

6 tháng 12 2016

mai mik nộp bài rồi giờ làm sao mà kịp huhuhuhuuhuhuhuhuhujuhuhuhu

9 tháng 11 2017

1)

a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)

\(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)

\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)

\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)

\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)

\(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)

17 tháng 8 2023

\(A=3+3^2+...+3^{101}+3^{102}\) (thêm 33 bi sót)

\(\Rightarrow A+1=1+3+3^2+...+3^{101}+3^{102}\)

\(\Rightarrow A+1=\dfrac{3^{102+1}-1}{3-1}\)

\(\Rightarrow A+1=\dfrac{3^{103}-1}{2}\)

\(\Rightarrow A=\dfrac{3^{103}-1}{2}-1\)

\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\)

mà \(\left(3^{102}-1\right)\) không chia hết cho 2;4;5

\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\) không chia hết cho 2;4;5

\(\Rightarrow A\) không chia hết cho 40 \(\left(vì40=2.4.5\right)\)

17 tháng 8 2023

\(B=4+4^2+4^3+...+4^{99}\)

\(\Rightarrow B=4\left(1+4^1+4^2\right)+4^4\left(1+4^1+4^2\right)...+4^{97}\left(1+4^1+4^2\right)\)

\(\Rightarrow B=4.21+4^4.21+...+4^{97}.21\)

\(\Rightarrow B=21\left(4+4^4+...+4^{97}\right)⋮21\)

\(\Rightarrow dpcm\)