K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: a+b+c=0

nên \(\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)

\(\Leftrightarrow2ab+2ac+2bc=-1\)

\(\Leftrightarrow ab+ac+bc=\dfrac{-1}{2}\)

\(\Leftrightarrow\left(ab+ac+bc\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2=\dfrac{1}{4}\)

Ta có: \(a^2+b^2+c^2=1\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=1\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+a^2c^2+b^2c^2\right)=1\)

\(\Leftrightarrow a^4+b^4+c^4+2\cdot\dfrac{1}{4}=1\)

\(\Leftrightarrow a^4+b^4+c^4=1-\dfrac{1}{2}=\dfrac{1}{2}\)

\(\Leftrightarrow a^4+b^4+c^4+\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{4}=\dfrac{2}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)

Vậy: \(a^4+b^4+c^4+\dfrac{1}{4}=\dfrac{3}{4}\)

30 tháng 6 2015

\(a^2+b^2+c^2=1\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=1\Leftrightarrow0-2\left(ab+bc+ca\right)=1\Leftrightarrow ab+bc+ca=-\frac{1}{2}\)

\(M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=1^2-2\left[\left(ab+bc+ca\right)^2-2\left(ab^2c+abc^2+a^2bc\right)\right]\)

\(=1-2\left(\frac{1}{4}-2abc\left(a+b+c\right)\right)=1-\frac{1}{2}+4abc.0=\frac{1}{2}\)

15 tháng 4 2020

chuyển mỗi biểu thức trong cân về cùng bậc 2 ta có:

\(a+\frac{\left(b-c\right)^2}{4}=a\left(a+b+c\right)+\frac{\left(b-c\right)^2}{4}=a^2+a\left(b+c\right)+\frac{\left(b+c\right)^2-4ab}{4}\)

\(=\left(a+\frac{b+c}{2}\right)^2-bc\le\left(a+\frac{b+c}{2}\right)^2\)

\(\Rightarrow\sqrt{a+\frac{\left(b-c\right)^2}{2}}\le a+\frac{b+c}{2}\)

tương tự ta có: \(\hept{\begin{cases}\sqrt{b+\frac{\left(c-a\right)^2}{4}}\le b+\frac{c+a}{2}\\\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le c+\frac{a+b}{2}\end{cases}}\)

cộng theo vế của bđt trên ta được

\(P=\sqrt{a+\frac{\left(b-c\right)^2}{4}}+\sqrt{b+\frac{\left(c-a\right)^2}{4}}+\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le2\left(a+b+c\right)=2\)

Vậy GTLN của P=2 đạt được khi a=b=0;c=1 và các hoán vị

1 tháng 7 2015

a + b +c =0 => ( a +b + c)^2 =0 => a^2 +b^2 +c^2 + 2ab +2bc + 2ac = 0

=> 1 + 2(ab + bc +ac) = 0 => 2(ab +bc +ac) = -1 ==> ab + bc +ac = -1/2

( ab + bc+ac)^2 = 1/4 => a^2.b^2 + b^2.c^2 + c^2.a^2 + 2ab^2.c +2ab.c^2 + 2 a^2.b.c = 1/4 

=> a^2 . b^2 + b^2 . c^2 + c^2 . a^2 + 2abc ( a+ b+ c) = 1/4

=> a^2 . b^2  + b^2 . c^2 + c^2 . a^2  + 2abc . 0 = 1/4

=> 2( a^2 . b^2 +  + b^2 . c^2 + c^2 . a^2 ) = 2.1/4 = 1/2 

=> 2a^2 . b^2 +  2 b^2 . c^2 + 2c^2 . a^2 = 1/2  

( a^2 + b^2 + c^2 )^2 = 1

=> a^4 + b^4 + c^4 + 2a^2.b^2 + 2b^2.c^2 + 2 c^2 . a^2 = 1

=> a^4 + b^ 4 + c^4 + 1/2 = 1 

=> a^4 + b^4 + c^4 = 1/2

7 tháng 7 2019

(a+b+c)2 = 0

<=> a+ b+ c2 + 2ab + 2bc + 2ac = 0

<=> 2ab + 2bc + 2ac = -1

<=> ab + bc + ac = -1/2

<=> a2b+ b2c2 + c2a2 + 2ab2c + 2abc2 + 2a2bc = 1/4

<=> a2b2 + b2c2 + c2a2 + 2abc(a+b+c) = 1/4

<=> a2b2 + b2c2 + c2a2 = 1/4

(a+ b+ c2)2 = 1

<=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2a2c2 = 1

<=> a4 + b+ c+ 2.1/4 = 1

<=> a4 + b+ c= 1 - 1/2 = 1/2.

Vậy M = 1/2

30 tháng 6 2015

 

\(a^2+b^2+c^2=1\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=1\Leftrightarrow0-2\left(ab+bc+ca\right)=1\Leftrightarrow ab+bc+ca=-\frac{1}{2}\)

\(M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=1^2-2\left[\left(ab+bc+ca\right)^2-2\left(ab^2c+abc^2+a^2bc\right)\right]\)

\(=1-2\left(\frac{1}{4}-2abc\left(a+b+c\right)\right)=1-\frac{1}{2}+4abc.0=\frac{1}{2}\)