K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2020
 

\(\dfrac{\text{(x+y)2−z2}}{\text{x+y+z}}\)=\(\dfrac{\text{(x+y+z)(x+y-z)}}{\text{x+y+z}}\)=x+y-y

29 tháng 12 2020

\(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}=x+y-z\)

Chúc bn học tốt!

a: \(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)-3abc}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\dfrac{\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ac}\)

=a+b+c

b: 

Sửa đề: \(=\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{\left(x-y\right)^3+z^3+3xy\left(x-y\right)+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2\right)+3xy\left(x-y+z\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)

\(=\dfrac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy-xz+yz\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)

\(=\dfrac{x-y+z}{2}\)

15 tháng 9 2023

a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)

\(=a+b+c\)

24 tháng 11 2018

a, Xét tử thức \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)

\(=x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left[\left(x-z\right)-\left(y-z\right)\right]\)

\(=x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-z\right)-z^2\left(y-z\right)\)

\(=\left(x^2-z^2\right)\left(y-z\right)-\left(y^2-z^2\right)\left(x-z\right)\)

\(=\left(x-z\right)\left(x+z\right)\left(y-z\right)-\left(y-z\right)\left(y+z\right)\left(x-z\right)\)

\(=\left(x-z\right)\left(xy-xz+yz-z^2-y^2-yz+yz+z^2\right)\)

\(=\left(x-z\right)\left(xy-xz+yz-y^2\right)=\left(x-z\right)\left[x\left(y-z\right)-y\left(y-z\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)

Mẫu thức \(x^2y-x^2z+y^2z-y^3=x^2\left(y-z\right)-y^2\left(y-z\right)=\left(x-y\right)\left(x+y\right)\left(y-z\right)\)

Vậy \(\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}=\frac{x-z}{x+y}\)

b, \(\frac{x^5+x+1}{x^3+x^2+x}=\frac{x^5-x^2+x^2+x+1}{x\left(x^2+x+1\right)}=\frac{x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1}{x\left(x^2+x+1\right)}=\frac{\left(x^2+x+1\right)\left(x^3-x^2+1\right)}{x\left(x^2+x+1\right)}=\frac{x^3-x^2+1}{x}\)

10 tháng 11 2021

\(A=\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)

Đk: \(x\ne y\ne z\)

\(\Rightarrow A=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}\)

        \(=x+y-z\)

10 tháng 11 2021

tại sao điều kiện lại là x ≠ y ≠ z

NV
17 tháng 12 2020

\(x+y+z=0\Leftrightarrow\left(x+y+z\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2=-2\left(xy+yz+zx\right)\)

\(P=\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)}=\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2}=\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Lời giải:

$xy+yz+xz=1$
$\Rightarrow x^2+1=x^2+xy+yz+xz=(x+y)(x+z)$

Tương tự: $y^2+1=(y+z)(y+x); z^2+1=(z+x)(z+y)$

Khi đó:

\(\sum \sqrt{\frac{(x^2+1)(y^2+1)}{z^2+1}}=\sum \sqrt{\frac{(x+y)(x+z)(y+x)(y+z)}{(z+x)(z+y)}}=\sum \sqrt{(x+y)^2}\)

$=\sum (x+y)=2(x+y+z)$

24 tháng 5 2017

\(=\frac{x^2+y^2+z^2}{2x^2+2y^2+2z^2-2xy-2yz-2zx}=\frac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x^2+y^2+z^2+2xy+2yz+2xz\right)}\)

\(=\frac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2}=\frac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)(vì x+y+z=0)

24 tháng 5 2017

tách mẫu số ra được: 2(x2+y2+z2)-2(xy+yz+xz)   (1)

mà x+y+z=0

=> (x+y+z)2=0

=> x2+y2+z2= -2(xy+yz +xz)   (2)

Thay (2) vào (1) ta được mẫu số: 3(x2+y2+z2)

Phân thức khi rút gọn được là: 1/3