Cho △ABC vuông tại A, trung tuyến AM, D đối xứng với A qua M. Kẻ ME//AB (E∈AC)
a) T/g ABCD là hình gì ?
b) C/m △MAC cân
c) Khi AB=4cm.Tính ME
d) △ABC cần thêm điều kiện gì thì t/g ABCD là h.vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng định lí Piatago trong \(\Delta ABC\) vuông tại \(A\) có:
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2=5^2+12^2\)
\(\Rightarrow BC=\sqrt{169}\)
\(\Rightarrow BC=13cm\)
Ta có: \(AM\) là đường trung tuyến ứng với cạnh huyền \(BC\) nên:
\(\Rightarrow AM=\frac{1}{2}BC=\frac{1}{2}.13=6,5cm\)
b, Xét tứ giác \(ABCD\) có:
\(M\) là trung điểm của \(AD\)
\(M\) là trung điểm của \(BC\)
\(\Rightarrow ABCD\) là HBH
\(\Rightarrow AD=BC\)
c, Giả sử \(AB=AC\)
\(\Rightarrow\Delta ABC\)vuông cân ( Từ đầu \(\Delta ABC\) vuông rồi)
Xét HBH \(ABCD\) có:
\(\widehat{A}=90^0\)
\(\Rightarrow ABCD\) là HCN
Xét hình chữ nhật \(ABCD\) có:
\(AB=AC\left(gt\right)\)
\(\Rightarrow ABCD\) là hình vuông.
Để \(ABCD\) là hình vuông thì \(\Delta ABC\) vuông tại \(A\) cần thêm điều kiện \(AB=AC\)
a ) Xét \(\Delta ABC\)vuông tại A (gt) có :
\(BC^2=AB^2+AC^2\)( định lý Py - ta - go )
\(BC^2=5^2+12^2\)
\(BC^2=25+144\)
\(BC^2=169\)
\(\Rightarrow BC=13cm\)( vì BC > 0 )
+ Vì AM là đường trung tuyến ứng với cạnh huyền BC trong tam giác vuông ABC ( gt)
\(\Rightarrow AM=\frac{1}{2}BC\)( tính chất tam giác vuông cân )
\(\Rightarrow AM=\frac{1}{2}.13\)
\(\Rightarrow AM=6,5\left(cm\right)\)
b ) Vì AM là đường trung tuyến của \(\Delta ABC\left(gt\right)\)
\(\Rightarrow M\)là trung điểm của BC (1)
+ Vì D đối xứng với A qua M (gt)
\(\Rightarrow M\)là trung điểm của AD (2)
Từ (1) và (2) \(\Rightarrow\) 2 dường chéo BC và AD cắt nahu tại trung điểm M của mỗi đường
\(\Rightarrow\)Tứ giác \(ABCD\) là hình bình hành ( dấu hiệu nhận biết hình bình hành )
Mà \(\widehat{BAC}=90^0\left(gt\right)\)
\(\Rightarrow\)Hình bình hành ABCD là hình chữ nhật ( dấu hiệu nhận biết hình chữ nhật )
\(\Rightarrow AD=BC\)( tính chất hình chữ nhật )
c ) Theo câu b ta có \(ABCD\)là hình chữ nhật
Để hình chữ nhật \(ABCD\) là hình vuông
\(\Leftrightarrow AB=AC\)
\(\Rightarrow\Delta ABC\)cân tại A
Mà \(\Delta ABC\)vuông tại A (gt)
\(\Rightarrow\Delta ABC\)vuông cân tại A .
Vậy \(\Delta ABC\)vuông cân tại A thì hình chữ hật ABCD là hình vuông
Chức bạn học tốt !!!
https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem
Bạn xem tại link này nhé
Học tốt!!!!!!
a; Xét tứ giác AEMF có
góc AEM=góc AFM=góc FAE=90 độ
=>AEMF là hình chữ nhật
b: Xét ΔBAC có
M là trung điểm của BC
ME//AC
=>E là trung điểm của AB
Xét tứ giác AMBN có
E là trung điẻm chung của AB và MN
MA=MB
=>AMBN là hình thoi
c: Để AMBN là hình vuông thì góc AMB=90 độ
=>góc B=45 độ
d: AM=5cm
=>AN=5cm
MN=AC=căn 10^2-8^2=6cm
\(P=\dfrac{5+5+6}{2}=8\left(cm\right)\)
\(S=\sqrt{8\cdot\left(8-5\right)\left(8-5\right)\cdot\left(8-6\right)}=\sqrt{8\cdot2\cdot3\cdot3}=4\cdot3=12\left(cm^2\right)\)