tìm tất cả các giá trị thực của m để phương trình 5sinx - 2m+1=0 có nghiệm trên (0 ; 7pi/6)
help pls :(
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Đặt t = sin x , vì x ∈ − π 2 ; 0 ⇒ t ∈ − 1 ; 0 .Khi đó, phương trình đã cho trở thành:
2 t 2 − 2 m + t t + 2 m − 1 = 0 ⇔ 2 t 2 − t − 1 − 2 m t − 1 = 0 ⇔ t − 1 2 t + 1 − 2 m = 0 ⇔ t = 2 m − 1 2 .
Mặt khác t ∈ − 1 ; 0 → − 1 < 2 m − 1 2 < 0 ⇔ − 2 < 2 m − 1 < 0 ⇔ m ∈ − 1 2 ; 1 2 .
Phương trình có hai nghiệm phân biệt ⇔ ∆ ' > 0
⇔ m 2 - 7 m + 16 > 0 ⇔ m − 7 2 2 + 15 4 > 0 , ∀ m ∈ R
Theo định lí Viet, ta có:
x 1 . x 2 = 3 m − 5 3 ; x 1 + x 2 = 2 ( m + 1 ) 3 x 1 = 3 x 2 ⇔ x 1 = m + 1 2 , x 2 = m + 1 6 x 1 . x 2 = 3 m − 5 3
⇒ m + 1 2 12 = 3 m − 5 3 ⇔ m 2 − 10 m + 21 = 0 ⇔ m = 3 m = 7
Đáp án cần chọn là: C
\(\Leftrightarrow sinx=\dfrac{2m-1}{5}\)
Do \(-\dfrac{1}{2}< sinx< 1\) khi \(x\in\left(0;\dfrac{7\pi}{6}\right)\)
\(\Rightarrow\) Pt có nghiệm khi và chỉ khi:
\(-\dfrac{1}{2}< \dfrac{2m-1}{5}< 1\Leftrightarrow-\dfrac{3}{4}< m< 3\)