K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2016

<=>xz+2x+a2-3-2ax-2=0
<=>x(z+2-2a)=-a2+5
<=>x=(-a2+5)/(z+2-2a)

12 tháng 2 2016

\(\Rightarrow x\left(z+2\right)+a^2-3=xz+2x+a^2-3\)

\(\Rightarrow xz+2x+a^2-3=2a\left(x+1\right)\)

\(\Rightarrow xz+2x+a^2-3=2ax+2a\)

\(\Rightarrow xz-2x+2x+a^2-2a-3=0\)

\(\Rightarrow xz+\left(2-2a\right)x+a^2-2a-3=0\)

\(\Rightarrow z=\frac{\left(2a-2\right)x-a^2+2a+3}{x}\)

1:

a: 2x-3=5

=>2x=8

=>x=4

b: (x+2)(3x-15)=0

=>(x-5)(x+2)=0

=>x=5 hoặc x=-2

2:

b: 3x-4<5x-6

=>-2x<-2

=>x>1

1 tháng 1 2024

1)

\(\dfrac{x-1}{2014}+\dfrac{x-2}{2013}+\dfrac{x-3}{2012}+...+\dfrac{x-2014}{1}=2014\)

\(\Leftrightarrow\left(\dfrac{x-1}{2014}-1\right)+\left(\dfrac{x-2}{2013}-1\right)+...+\left(\dfrac{x-2014}{1}-1\right)=0\)

\(\Leftrightarrow\dfrac{x-2015}{2014}+\dfrac{x-2015}{2013}+...+\dfrac{x-2015}{1}=0\)

\(\Leftrightarrow\left(x-2025\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1}\right)=0\)

\(\Leftrightarrow x=2015\)

Vậy \(S=\left\{2015\right\}\)

 

18 tháng 12 2022

Ta có x + y + z = 0 

<=> (x + y + z)2 = 0

<=> \(x^2+y^2+z^2+2xy+2yz+2zx=0\)

\(\Leftrightarrow xy+yz+zx=-3\) (vì x2 + y2 + z2 = 6)

\(\Leftrightarrow x\left(y+z\right)+yz=-3\)

\(\Leftrightarrow-x^2+yz=-3\Leftrightarrow yz=x^2-3\) (vì x + y + z = 0)

Khi đó \(x^3+y^3+z^3=x^3+(y+z).(y^2+z^2-yz)\)

\(=x^3-x.[6-x^2-(x^2-3)]\)

\(=x^3-x.(9-2x^2)=3x^3-9x=6\)

Ta được \(\Leftrightarrow x^3-3x-2=0\Leftrightarrow(x^3+1)-3(x+1)=0\)

\(\Leftrightarrow(x+1)(x^2-x-2)=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

Với x = -1 ta có hệ \(\left\{{}\begin{matrix}y+z=1\\y^2+z^2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\(1-z)^2+z^2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\z^2-z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\\left[{}\begin{matrix}z=-1\\z=2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2\\z=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=-1\\z=2\end{matrix}\right.\end{matrix}\right.\)

Với x = 2 ta có hệ : \(\left\{{}\begin{matrix}y+z=-2\\y^2+z^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\(-2-z)^2+z^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\z^2+2z+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\z=-1\end{matrix}\right.\Leftrightarrow y=z=-1\)

Vậy (x;y;z) = (2;-1;-1) ; (-1 ; 2 ; -1) ; (-1 ; -1 ; 2)

18 tháng 12 2022

em cảm ơn ạ

28 tháng 1 2018

bạn ơi đề khó nhìn vậy  

28 tháng 1 2018
bạn giúp mk vs đk k bạn

Bài 3: 

b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)

hay \(x\in\left\{0;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)

=>x-1=0

hay x=1

d: \(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)

hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)

11 tháng 12 2017

em vẫn chưa lp 9 nên e ko trả lời đk,em xin lỗi kk