K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2020

Ta có: \(3\left(a^2+2\right)+9a\)

\(=3a^2+6+9a\)

\(=3a\left(a+3\right)+6\)

+) a lẻ => a+3 chẵn => 3a(a+3) chia hết cho 6

+) a chẵn => 3a(a+3) chia hết cho 6

=> \(3\left(a^2+2\right)+9a\) chia hết cho 6 với mọi a nguyên 

=> đpcm

28 tháng 12 2020

3(a2 + 2) + 9a

= 3(a2 + 3a + 2)

= 3(a2 + a + 2a + 2)

= 3[a(a + 1) + 2(a + 1)]

= 3(a + 1)(a + 2)

Vì (a + 1)(a + 2) là tích 2 số nguyên liên tiếp

=> \(\left(a+1\right)\left(a+2\right)⋮2\)

mà ƯCLN(2;3) = 1

=> 3(a + 1)(a + 2) \(⋮\)2.3

=> 3(a + 1)(a + 2) \(⋮\)

=> 3(a2 + 2) + 9a \(⋮\)6 (đpcm)

21 tháng 12 2019

a, \(a^2\left(a+1\right)+2a\left(a+1\right)\)

\(=a\left(a+1\right)\left(a+2\right)\)

\(a,a+1\) là 2 số tự nhiên liên tiếp nên:

\(\Rightarrow a\left(a+1\right)\) chia hết cho \(2\)

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(2\)

\(a,a+1,a+2\) là 3 số tự nhiên liên tiếp nên:

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho 3

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(2.3\)

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(6\left(đpcm\right)\)

b, \(a\left(2a-3\right)-2a\left(a+1\right)\)

\(=a\left[2a-3-2\left(a+1\right)\right]\)

\(=-5a\) chia hết cho \(5\left(đpcm\right)\)

27 tháng 7 2016

a) \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)

Vì \(n;n+1;n-1\)là 3 số nguyên liên tiếp chia hết cho 6.

\(\Rightarrow a\left(a+1\right)\left(a-1\right)\)chia hết cho 6

Hay \(a^3-a\)chia hết cho 6 (với mọi \(a\in Z\))

b) \(ab.\left(a^2-b^2\right)\)

Nếu a hoặc b chia hết cho 6 \(\Rightarrow ab.\left(a^2-b^2\right)\)chia hết cho 6

Nếu  a và b không chia hết cho 6 mà \(a^2\)chia 6 dư 1(2;3;4;5....) và \(b^2\)chia 6 dư 1(2;3;4;5...) 

\(\Rightarrow a^2-b^2\)chia 6 dư 1 (2;3;4;5...)  - 1 (2;3;4;5...) = 0

thì \(ab.\left(a^2-b^2\right)\)chia hết cho 6.

a: \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)

Vì a;a-1;a+1 là ba số nguyên liên tiếp

nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)

hay \(a^3-a⋮6\)

b: \(ab\left(a^2-b^2\right)=a^3b-ab^3\)

\(=a^3b-ab+ab-ab^3\)

\(=b\left(a^3-a\right)+a\left(b-b^3\right)\)

Vì \(a^3-a⋮6\)

và \(b-b^3=-\left(b^3-b\right)⋮6\)

nên \(ab\left(a^2-b^2\right)⋮6\)

12 tháng 7 2017

\(b.\)\(\left(2n-1\right)^3-\left(2n-1\right)=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)

\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)

\(\text{Áp dụng hằng đẳng thức }\)\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(=\left(2n-1\right)\left(2n-2\right).2n=\left(2n-1\right).2\left(n-1\right).2n\)

\(=\left(2n-1\right).4.n\left(n-1\right)\)

\(n\left(n-1\right)⋮2\)(vì là tích 2 số liên tiếp)

\(\Rightarrow\left(2n-1\right).4.n\left(n-1\right)⋮\left(4.2\right)=8\)

\(\left(2n-1\right).4.n\left(n-1\right)⋮8\RightarrowĐPCM\)

22 tháng 10 2017

\(\text{ Ta có : }\left(n+2\right)^2-\left(n+2\right)^2=0⋮8\left(đpcm\right)\)

Vậy...............

Sai đề rồi :))

22 tháng 10 2017

\(\left(n+2\right)^2-\left(n-2\right)^2⋮8\)

\(\text{Ta có : }\left(n+2\right)^2-\left(n-2\right)^2\\ \\ =\left(n+2+n-2\right)\left(n+2-n+2\right)\\ \\ =2n\cdot4\\ \\ =8n⋮8\left(đpcm\right)\)

Vậy \(\left(n+2\right)^2-\left(n-2\right)^2⋮8\)

5 tháng 11 2017

khó quá

27 tháng 3 2018

dễ mà cô nương

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)

\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)

ta có 

\(a=-5-b\)

suy ra

\(a^3-b^3=19\left(-5-2b\right)\) " xong "

2, trên mạng đầy

3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)

4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm

5. trên mạng đầy

6 , trên mang jđầy 

26 tháng 2 2017
  • + Nếu trong 2 số a;b có 1 số chẵn => ab(a2 - b2) chia hết cho 2

+ Nếu a;b cùng lẻ thì a2;b2 cùng lẻ => a2 - b2 chẵn => ab(a2 - b2) chia hết cho 2

Như vậy, ab(a2 - b2) chia hết cho 2 với mọi a;b thuộc Z    (1)

  • + Nếu trong 2 số a;b có 1 số chia hết cho 3 => ab(a2 - b2) chia hết cho 3

+ Nếu trong 2 số a;b không có số nào chia hết cho 3 thì a2;b2 cùng chia 3 dư 1

=> a2 - b2 chia hết cho 3 => ab(a2 - b2) chia hết cho 3

Như vậy, ab(a2 - b2) chia hết cho 3 với mọi a;b thuộc Z     (2)

Từ (1) và (2), do (2;3)=1 => ab(a2 - b2) chia hết cho 6 (đpcm)