M=9¹+9²+9³+9⁴....+9¹⁰+9¹¹+9¹². Chứng minh M là bội của 31.
Giúp nhanh với ạ!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D là bội của 41 thì D phải chia hết cho 41
\(D=9^1+9^2+9^3+...+9^{2020}\)
\(\Rightarrow D=\left(9^1+9^2+9^3+9^4\right)+...+\left(9^{2017}+9^{2018}+9^{2019}+9^{2020}\right)\)
\(D=9\left(1+9+9^2+9^3\right)+...+9^{2017}\left(1+9+9^2+9^3\right)\)
\(D=\left(1+9+9^2+9^3\right)\left(9+9^5+9^9...+9^{2017}\right)\)
\(D=820\left(9+9^5+9^9+...+9^{2017}\right)\)
mà \(820⋮41\)nên D chia hết cho 41 hay D là bội của 41
Giá trị của biểu thức M=\dfrac{-9}{31}.\dfrac{5}{11}.\dfrac{-31}{9}.(-22)M=31−9.115.9−31.(−22) là
b) Đặt $A=$ $(a-1).(a+2) +12$
$ = a^2+2a-a-2+12$
$ = a^2+a+10$
$ = a^2+a+1+9$
Giả sử $ A \vdots 9$
$\to a^2+a+1+9 \vdots 9$
$\to a^2+a+1 \vdots 9$
$\to 4a^2+4a+4 \vdots 9$ hay : $a^2+4a+4 \vdots 3$
$\to (2a+1)^2 + 3 \vdots 3$
$\to (2a+1)^2 \vdots 3 \to 2a+1 \vdots 3$
Mà $3$ là số nguyên tố nên :
$(2a+1)^2 \vdots 9$
Do đó : $(2a+1)^2 + 3 \not \vdots 9$
Từ đs suy ra $A$ không là bội của $9$.
Câu b) em làm tương tự em tách thành chia hết cho $7$ vì $7$ là số nguyên tố.
a) Trường hợp 1: a=3k(k∈N)
Suy ra: \(\left(a-1\right)\left(a+2\right)+12=\left(3k-1\right)\left(3k+2\right)+12\)
Vì 3k+1 và 3k+2 không chia hết cho 3 nên \(\left(3k-1\right)\left(3k+2\right)+12⋮̸3\)
\(\Leftrightarrow\left(3k-1\right)\left(3k+2\right)+12⋮̸9\)(1)
Trường hợp 2: a=3k+1(k∈N)
Suy ra: \(\left(a-1\right)\left(a+2\right)+12=\left(3k+1-1\right)\cdot\left(3k+1+2\right)+12\)
\(=3k\cdot\left(3k+3\right)+12\)
\(=9k^2+9k+12⋮̸9\)(2)
Trường hợp 3: a=3k+2(k∈N)
Suy ra: \(\left(a-1\right)\left(a+2\right)+12=\left(3k+2-1\right)\left(3k+2+2\right)+12\)
\(=\left(3k+1\right)\left(3k+4\right)+12⋮̸9\)(3)
Từ (1), (2) và (3) suy ra ĐPCM
M=9¹+9²+9³+9⁴....+9¹⁰+9¹¹+9¹²
9M=9(9¹+9²+9³+9⁴....+9¹⁰+9¹¹+9¹²)
9M=9.9¹+9.9²+9.9³+9.9⁴....+9.9¹⁰+9.9¹¹+9.9¹²
9M= 9²+ 9³+ 9⁴ + 9(mũ 5) ....+9¹¹+9¹²+9(mũ 13)
M= 9²+ 9³+ 9⁴ ....+9¹¹+9¹²+9¹
8M= 0+ 0+ 0 ....+0 +0 +9(mũ 13)-9¹
8M=9(mũ 13)-9
M=9[(mũ 13)-9]:8=(254186582832-9):8=254186582823:8=317733228528317733228528 chia hết cho 31 nên m là bội của 31