Tìm x, y nguyên dương thỏa mãn:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{6xy}=\dfrac{1}{6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6xy=x+y\ge2\sqrt[]{xy}\Rightarrow\sqrt{xy}\ge\dfrac{1}{3}\Rightarrow xy\ge\dfrac{1}{9}\Rightarrow\dfrac{1}{xy}\le9\)
\(M=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1+\dfrac{xy+x}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{x+1}{1-xy}}{\dfrac{x+1}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{1}{1-xy}+\dfrac{1}{1+xy}}{\dfrac{1}{1-xy}-\dfrac{1}{1+xy}}\)
\(M=\dfrac{1+xy+1-xy}{1+xy-1+xy}=\dfrac{2}{2xy}=\dfrac{1}{xy}\le9\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{3}\)
Áp dụng BĐT BSC:
\(F=\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)
\(\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}\right)\)
\(=\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{4}.4=1\)
\(maxF=1\Leftrightarrow x=y=z=\dfrac{3}{4}\)
Ta có \(2=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\Leftrightarrow xy\ge1\)
\(A=\dfrac{1}{x^4+y^2+2xy^2}+\dfrac{1}{x^2+y^4+2x^2y}\\ \le\dfrac{1}{4\sqrt[4]{x^6y^6}}+\dfrac{1}{4\sqrt[4]{x^6y^6}}=\dfrac{1}{4xy}+\dfrac{1}{4xy}\\ \le\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)
Dấu \("="\Leftrightarrow x=y=1\)
\(\dfrac{x}{8}-\dfrac{1}{4}=\dfrac{1}{y}\)
\(\Leftrightarrow\dfrac{x-2}{8}=\dfrac{1}{y}\)
\(\Leftrightarrow x-2=\dfrac{8}{y}\)
Do \(x-2\in Z\Rightarrow\dfrac{8}{y}\in Z\)
\(\Rightarrow y=Ư\left(8\right)\)
\(\Rightarrow y=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow x=\left\{1;0;-2;-6;10;6;4;3\right\}\)
\(x+2y=6\)
\(\Leftrightarrow\dfrac{6}{2}=\dfrac{x}{2}+y\)
\(P+\dfrac{6}{2}=\dfrac{8}{x}+\dfrac{1}{y}+\dfrac{x}{2}+y\)
\(\Leftrightarrow P+\dfrac{6}{2}=\left(\dfrac{8}{x}+\dfrac{1}{y}\right)+\left(\dfrac{1}{y}+y\right)\)
vì x;y là số thực dương ,áp dụng BĐT Côsi ta có :
\(\dfrac{8}{x}+\dfrac{x}{2}=2\sqrt{\dfrac{8}{x}+\dfrac{x}{2}}=2\sqrt{4}=2.2=4\)
\(\dfrac{1}{y}+y=2\sqrt{\dfrac{1}{y}+y}=2\sqrt{1}=2.1=2\)
nên \(P+\dfrac{6}{2}\ge6\)
\(\Leftrightarrow P\ge6-\dfrac{6}{2}\)
\(\Leftrightarrow P\ge3\)
vậy \(P_{min}=3\)
Cho x,y là các số dương thỏa mãn \(\dfrac{1}{x^2}-\dfrac{1}{y^2}=\dfrac{1}{2}\)
Tìm GTNN của C = x+y
Đề bài sai, C không có giá trị nhỏ nhất
Nếu \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{2}\) thì có thể tìm được min của C
\(...\Leftrightarrow\dfrac{x+y+1}{6xy}=\dfrac{1}{6}\Leftrightarrow x+y+1=xy\Leftrightarrow\left(x-1\right)\left(y-1\right)=2\Leftrightarrow\left[{}\begin{matrix}x=3;y=2\\x=2;y=3\end{matrix}\right.\)
Maths CTV sai r thử lại ko đúng!