K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2020

bạn y nhân tạo của mũ a rồi cộng vào là ra được kết quả thôi mình thấy dễ mà

9 tháng 5 2020

Trả lời :

Bn Lê Thanh Vân bn y ở đâu ra ??

- Hok tốt !

^_^

5 tháng 2 2021

Ta thấy (x,y)=(0,0) ko là nghiệm của hệ phương trình

\(\Leftrightarrow\left\{{}\begin{matrix}xy^2+xy+y^2=0\left(1\right)\\xy^2-4=x^2\left(2\right)\end{matrix}\right.\) 

Trừ từng vế của (1) cho (2) ta được: \(y^2+xy+4=-x^2\Leftrightarrow x^2+xy+y^2+4=0\Leftrightarrow x^2+xy+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=-4\) \(\Leftrightarrow\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2=-4\) Vô lí \(\Rightarrow\) Ko có x,y

Vậy hệ phương trình vô nghiệm

30 tháng 5 2018

(1) \(\Leftrightarrow\left(x-y\right)\left(x+2y+1\right)=0\)

AH
Akai Haruma
Giáo viên
1 tháng 2 2017

Xét PT bậc $2$ ẩn $x$ là \(2x^2+x(y-5)-y^2+y+2=0\)\(\Delta =(3y-3)^2\) nên dễ dàng phân tích thành nhân tử.

PT \((1)\Leftrightarrow (x+y-2)(2x-y-1)=0\) \(\Rightarrow \left[ \begin{array}{ll} x+y=2 \\ \\ 2x-y-1=0 \end{array} \right.\)

Nếu \(x+y=2\). Thay vào PT \((2)\Rightarrow xy=1\). Từ đó dễ dàng thu được \((x,y)=(1,1)\)

Nếu \(2x-1=y\). Thay vào PT $(2)$ suy ra \(5x^2-x-4=0\Rightarrow x=1\) hoặc \(x=\frac{-4}{5}\). Tương ứng \(y=1\)\(\frac{-13}{5}\)

Vậy HPT có nghiệm \((x,y)=(1,1),(\frac{-4}{5},\frac{-13}{5})\)

8 tháng 8 2017

Đk: \(y\ne0\)

hpt \(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy-6y=xy+y^2+x-5y\\x+y=\dfrac{6y}{x}\\x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-y^2-y-x=0\\x+y=\dfrac{6y}{x}\\x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)\left(x-y\right)-\left(x+y\right)=0\\x+y=\dfrac{6y}{x}\\x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6y}{x}\left(x-y-1\right)=0\\x+y=\dfrac{6y}{x}\\x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1+y\\x+y=\dfrac{6y}{x}\\x,y\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1+y\\1+2y=\dfrac{6y}{1+y}\\x,y\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1+y\\1+2y+y+2y^2=6y\\x,y\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1+y\\2y^2-3y+1=0\left(@\right)\\x,y\ne0\end{matrix}\right.\)

(@) \(\Leftrightarrow\left[{}\begin{matrix}y=1\left(N\right)\\y=\dfrac{1}{2}\left(N\right)\end{matrix}\right.\)

Với y=1, ta có x=2 (N)

Với y= 1/2 , ta có x= 3/2 (N)

KL : nếu x= 2 thì y=1

nếu x=3/2 thì y=1/2

31 tháng 7 2017

Đặt \(\sqrt{x}=a;\sqrt{y}=b\left(a,b>0\right)\) thì có:

\(\hept{\begin{cases}a^3+b^3=2ab\\a+b=2\end{cases}}\). Khi đó xét pt(1)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=2\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2-2\right)=0\)

*)Xét \(a+b=0\Rightarrow a=-b\Rightarrow a=b=0\) (loại)

*)Xét \(a^2-ab+b^2-2=0\Rightarrow a^2+b^2-ab=2\)

Do \(a,b\ge0\) nên xài AM-GM ta có:

\(a^2+b^2\ge2ab\Rightarrow a^2+b^2-ab\ge ab=2\)

Và \(ab\le\frac{\left(a+b\right)^2}{4}=2\) Xảy ra khi \(a=b=1\) (thỏa)

Vậy nghiệm hpt là \(a=b=1\)

31 tháng 7 2017

Đặt √x=a;√y=b,ta có;a^3+b^3=2ab;a+b=2>>>(a+b)(a^2-ab+b^2)=2(a^2-ab+b^2)=2ab

a^2-ab+b^2=ab >>>(a-b)^2=0 >>>a=b>>>x=y=1

30 tháng 3 2020

hệ \(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)\left(x+2y\right)+\left(x-y\right)=0\\x^2-y^2+x+y=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)\left(x+2y+1\right)=0\left(1\right)\\x^2-y^2+x+y=6\left(2\right)\end{cases}}\)

Th1: x=y

pt 2<=> 2x=6

<=> x=y=3

Th2: x+2y+1=0

<=> x=-1-2y

=> pt (2) <=> \(\left(-1-2y\right)^2-y^2-1-2y+y=6\)

\(\Leftrightarrow4y^2+4y+1-y^2-1-2y+y=6\)

\(\Leftrightarrow3y^2+3y-6=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=3\end{cases}}\)

KL:............................