K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2020

Thôi chịu rồi nhé

27 tháng 12 2020

\(\left(x-1\right)^2+\left(x+3\right)^2=29\cdot\left(x-2\right)\cdot\left(x+1\right)+38\)    

\(x^2-2x+1+x^2+6x+9=29\left(x^2-x-2\right)+38\)   

\(2x^2+4x+10=29^2-29x-58+38\)    

\(2x^2+4x+10=29x^2-29x-20\)   

\(0=29x^2-2x^2-29x-4x-20-10\)   

\(0=27x^2-33x-30\)    

\(27x^2-33x-30=0\)   

\(\orbr{\begin{cases}x=\frac{11+\sqrt{481}}{18}\\x=\frac{11-\sqrt{481}}{18}\end{cases}}\)

1 tháng 7 2017

Ta có : (x - 1)2 + (x + 3)2 = 2(x - 2)(x + 1) + 38

<=> x2 - 2x + 1 + x2 + 6x + 9 = 2x2 - 2x - 4 + 38

<=> x2 - 2x + 1 + x2 + 6x + 9 - 2x2 + 2x + 4 - 14 = 24

<=> x2 + x2 - 2x2 - 2x + 2x + 6x + 1 + 9 + 4 - 14 = 24

<=> 6x = 24

=> x = 24 : 6

=> x = 4 

1 tháng 7 2017

\(\left(x-1\right)^2+\left(x+3\right)^2=2\left(x-2\right)\left(x+1\right)+38\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(x^2+6x+9\right)=2\left(x^2-x-2\right)+38\)

\(\Leftrightarrow2x^2+4x+10=2x^2-2x+34\)

\(\Leftrightarrow2x^2+4x-2x^2+2x=34-10\)

\(\Leftrightarrow6x=24\)

\(\Rightarrow x=4\)

14 tháng 3 2021

a) \(\left(3x+2\right)^2-\left(3x-2\right)^2=5x+38\)

\(\Leftrightarrow\left[\left(3x+2\right)-\left(3x-2\right)\right]\left[\left(3x+2\right)+\left(3x-2\right)\right]=5x+38\)

\(\Leftrightarrow\left(3x+2-3x+2\right)\left(3x+2+3x-2\right)=5x+38\)

\(\Leftrightarrow4\cdot6x=5x+38\)

\(\Leftrightarrow24x-5x=38\)

\(\Leftrightarrow19x=38\Leftrightarrow x=\dfrac{38}{19}=2\)

Vậy \(S=\left\{2\right\}\)

b) \(\left(x+1\right)\left(x^2-2x+1\right)-2x=2\left(x-1\right)\left(x+1\right)\)

\(\Leftrightarrow x^3-2x^2+x+x^2-2x+1-2x=2\left(x^2-1\right)\)

\(\Leftrightarrow x^3-2x^2+x+x^2-2x+1-2x=2x^2-2\)

\(\Leftrightarrow x^3-2x^2+x+x^2-2x+1-2x-2x^2+2=0\)

\(\Leftrightarrow x^3-3x^2-3x+3=0\)

PT vô nghiệm , không tìm được x 

Vậy \(S=\varnothing\)

c) \(3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\)

\(\Leftrightarrow3\left(x^2-2x+4\right)+9\left(x-1\right)=3\left(x^2+x-3\right)\)

\(\Leftrightarrow3x^2-6x+12+9x-9=3x^2+3x-9\)

\(\Leftrightarrow3x^2-6x+12+9x-9-3x^2-3x+9=0\)

\(\Leftrightarrow0x+12=0\)

PT vô nghiệm 

Vậy \(S=\varnothing\)

Câu cuối tương tự 

4 tháng 2 2020

a) \(\left(2x-2\right)^2=\left(x+1\right)^2+3\left(x-2\right)\left(x+5\right)\)

\(\Leftrightarrow4x^2-8x+4=x^2+2x+1+3\left(x^2+3x-10\right)\)

\(\Leftrightarrow4x^2-8x+4=x^2+2x+1+3x^2+9x-30\)

\(\Leftrightarrow4x^2-8x+4=4x^2+11x-29\)

\(\Leftrightarrow-8x-11x=-29-4\)

\(\Leftrightarrow-19x=-33\)

\(\Leftrightarrow x=\frac{33}{19}\)

Vậy \(x=\frac{33}{19}\)là nghiệm của phương trình

b) \(\left(x-1\right)^2+\left(x+3\right)^2=2\left(x-2\right)\left(x+1\right)+38\)

\(\Leftrightarrow x^2-2x+1+x^2+6x+9=2\left(x^2-x-2\right)+38\)

\(\Leftrightarrow2x^2+4x+10=2x^2-2x-4+38\)

\(\Leftrightarrow4x+2x=-4+38-10\)

\(\Leftrightarrow6x=24\)

\(\Leftrightarrow x=4\)

Vậy \(x=4\)là nghiệm của phương trình.

28 tháng 2 2020

giải phương trình sau:(x-3)3-2(x-1)=x.(x-2)2-5x2

21 tháng 7 2019

a) \(\left(3x-1\right)^2-\left(x+3\right)^2=0\)

\(=>\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)

\(=>\left(4x+2\right)\left(2x-4\right)=0\)

\(=>4\left(2x+1\right)\left(x-2\right)=0\)

\(=>\orbr{\begin{cases}2x+1=0\\x-2=0\end{cases}}\)

\(=>\orbr{\begin{cases}x=-\frac{1}{2}\\x=2\end{cases}}\)

b)\(x^3-\frac{x}{49}=0=>x\left(x^2-\frac{1}{49}\right)=0=>x\left(x-\frac{1}{7}\right)\left(x+\frac{1}{7}\right)=0\)

\(=>x=0\)hoặc \(x=\frac{1}{7}\) hoặc \(x=-\frac{1}{7}\)

a)\(\(\left(3x-1\right)^2-\left(x+3\right)^2=0\)\)

\(\(\Leftrightarrow\left(3x-1-x-3\right)\left(3x-1+x+3\right)=0\)\)

\(\(\Leftrightarrow\left(2x-4\right)\left(4x+2\right)=0\)\)

\(\(\Leftrightarrow\orbr{\begin{cases}2x-4=0\\4x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}}\)\)

b)\(\(x^3-\frac{x}{49}=0\)\)

\(\(\Leftrightarrow\frac{49x^3-x}{49}=0\)\)

\(\(\Leftrightarrow x\left(49x^2-1\right)=0\)\)

\(\(\Leftrightarrow\orbr{\begin{cases}x=0\\49x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(7x-1\right)\left(7x+1\right)=0\end{cases}}}\)\)\

\(\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{7};x=-\frac{1}{7}\end{cases}}\)\)

c)\(\(x^2-7x+12=0\)\)

\(\(\Leftrightarrow\left(x-4\right)\left(x-3\right)=0\)\)

\(\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=3\end{cases}}}\)\)

d) \(\(4x^2-3x-1=0\)\)

\(\(\Leftrightarrow4x^2-4x+x-1=0\)\)

\(\(\Leftrightarrow4x\left(x-1\right)+\left(x-1\right)=0\)\)

\(\(\Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\)\)

\(\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\4x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{4}\end{cases}}}\)\)

e) Tham khảo tại : [Toán 8]Giải phương trình | Cộng đồng học sinh Việt Nam - HOCMAI Forum

https://diendan.hocmai.vn/threads/toan-8-giai-phuong-trinh.290061/

_Y nguyệt_

\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\left(ĐKXĐ:x\ne5\right)\)

\(\Rightarrow3\left(4x-3\right)=29\left(x-5\right)\)

\(\Leftrightarrow12x-9=29x-145\)

\(\Leftrightarrow12x-9-29x+145=0\)

\(\Leftrightarrow-17x+136=0\)

\(\Leftrightarrow-17x=-136\)

\(\Leftrightarrow x=8\left(tm\right)\)

Vậy \(S=\left\{8\right\}\)

 

\(2,\dfrac{2x-1}{5-3x}=2\left(ĐKXĐ:x\ne\dfrac{5}{3}\right)\)

\(\Rightarrow2x-1=2\left(5-3x\right)\)

\(\Leftrightarrow2x-1=10-6x\)

\(\Leftrightarrow2x-1-10+6x=0\)

\(\Leftrightarrow8x-11=0\)

\(\Leftrightarrow8x=11\)

\(\Leftrightarrow x=\dfrac{11}{8}\left(tm\right)\)

Vậy \(S=\left\{\dfrac{11}{8}\right\}\)

 

\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\left(ĐKXĐ:x\ne1\right)\)

\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\)

\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2x-2}{x-1}+\dfrac{x}{x-1}\)

\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{3x-2}{x-1}\)

\(\Rightarrow4x-5=3x-2\)

\(\Leftrightarrow4x-5-3x+2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\left(tm\right)\)

Vậy \(S=\left\{3\right\}\)

 

\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\left(ĐKXĐ:x\ne\dfrac{1}{2};x\ne-5\right)\)

\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)

\(\Leftrightarrow\dfrac{2x^2+15x+25}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)

\(\Leftrightarrow\dfrac{15x+25}{2x\left(x+5\right)}=0\)

\(\Rightarrow15x+25=0\)

\(\Leftrightarrow15x=-25\)

\(\Leftrightarrow x=\dfrac{-5}{3}\left(tm\right)\)

Vậy \(S=\left\{\dfrac{-5}{3}\right\}\)

 

 

 

17 tháng 1 2023

\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-29\left(x-5\right)}{3\left(x-5\right)}=0\)

\(\Leftrightarrow12x-9-29x+145=0\)

\(\Leftrightarrow-17x=-136\)

\(\Leftrightarrow x=8\)

\(2,\dfrac{2x-1}{5-3x}=2\)

\(\Leftrightarrow\dfrac{2x-1-2\left(5-3x\right)}{5-3x}=0\)

\(\Leftrightarrow2x-1-10+6x=0\)

\(\Leftrightarrow8x=11\)

\(\Leftrightarrow x=\dfrac{11}{8}\)

\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)

\(\Leftrightarrow\dfrac{4x-5-2\left(x-1-x\right)}{x-1}=0\)

\(\Leftrightarrow4x-5-2x+2+2x=0\)

\(\Leftrightarrow4x=3\)

\(\Leftrightarrow x=\dfrac{3}{4}\)

\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)

\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)-2x^2}{2x\left(x+5\right)}=0\)

\(\Leftrightarrow2x^2+10x+5x+25-2x^2=0\)

\(\Leftrightarrow15x=-25\)

\(\Leftrightarrow x=-\dfrac{5}{3}\)