cho hàm só y=ax-2 (a≠0), có đồ thị đường thẳng (d)
a) xác định a, biết (d) song song với đường thẳng y=1-3x. vẽ đường thẳng (d)
b) tìm tọa độ giao điểm của đường thẳng (d) và đường thẳng (d'): y=x+6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do (d1) song song với đường thẳng y = 2x nên a = 2
(d1): y = 2x + b
Thay tọa độ điểm (1; -1) vào (d) ta được:
2.1 + b = -1
⇔ b = -1 - 2
⇔ b = -3
Vậy (d1): y = 2x - 3
b) x = 0 ⇒ y = -3
*) Đồ thị:
c) Phương trình hoành độ giao điểm của (d1) và (d2):
2x - 3 = 1/2 x + 1
⇔ 2x - 1/2 x = 1 + 3
⇔ 3/2 x = 4
⇔ x = 4 : 2/3
⇔ x = 8/3
⇒ y = 2.8/3 - 3 = 7/3
Vậy tọa độ giao điểm của (d1) và (d2) là (8/3; 7/3)
d) Ta có:
Gọi a là góc cần tính
⇒ tan(a) = 2
⇒ a ≈ 63⁰
(b) và (d) bạn tự xem kiến thức vẽ rồi áp dụng công thức tan là làm được nha=)
a)
Đồ thị hàm số (d1)// đường thẳng `y=2x`
=> \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b\ne0\end{matrix}\right.\)
=> `y=2x+b`
Do hàm số `y=2x+b` đi qua điểm `(1;-1)` nên `x=1`, `y=-1`:
`-1=2.1+b`
=> `b=-3`
Vậy hàm số `y=ax+b` là `y=2x-3`
c)
Ta có PTHĐGĐ giữa `d_1` và `d_2`:
\(2x-3=\dfrac{1}{2}x+1\\ \Rightarrow x=\dfrac{8}{3}\Rightarrow y=\dfrac{7}{3}\)
Vậy `E=`\(\left(\dfrac{8}{3};\dfrac{7}{3}\right)\)
$HaNa$
a: Thay x=1 và y=-1 vào (d), ta được:
a+3=-1
hay a=-4
Đồ thị của hàm số \(y=ax+b\) song song với đường thẳng \(y=3x+1.\) \(\Rightarrow\left\{{}\begin{matrix}a=3.\\b\ne1.\end{matrix}\right.\) (1)
Đồ thị của hàm số \(y=ax+b\) cắt trục hoành tại điểm có hoành độ bằng \(-3.\) \(\Rightarrow\left\{{}\begin{matrix}x=-3.\\y=0.\end{matrix}\right.\) (2)
Thay (1); (2) vào hàm số \(y=ax+b\)\(:0=3.\left(-3\right)+b.\Leftrightarrow b=9\left(TM\right).\)
Vậy hàm số đó là: \(y=3x+9.\)
c1:
Vì (d')//d nên pt đường thẳng của (d') là:y=-3x+b
đường thẳng (d') có tung độ gốc =2 => b=2
Vậy : pt đường thẳng của (d') là:y=-3x+2
b: Vì (d')//(d) nên a=2
Vậy: (d'): y=2x+b
Thay x=1 và y=4 vào (d'), ta được:
b+2=4
hay b=2
a. \(PTHDGD:\left(d\right)-\left(d'\right):2x+3=x-1\)
\(\Rightarrow x=-4\left(1\right)\)
Thay (1) vào (d'): \(y=-4-1=-5\)
\(\Rightarrow M\left(-4;-5\right)\)
\(a,\text{PT hoành độ giao điểm: }2x+3=x-1\\ \Leftrightarrow x=-4\Leftrightarrow y=-5\\ \Leftrightarrow M\left(-4;-5\right)\\ b,\Leftrightarrow\left\{{}\begin{matrix}-2a+b=3\\a=2;b\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=7\end{matrix}\right.\)
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}3x=-2x+5\\y=3x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
a.
- Đường thẳng (d) song song với y = 1 - 3x nên ta có:
\(a=-3\)
\(\rightarrow\) Hàm số có dạng \(y=-3x-2\)
- Vẽ đường thẳng \(\left(d\right):y=-3x-2\)
+ Giao với trục Oy: \(x=0\rightarrow y=-2\Rightarrow A\left(0;-2\right)\)
+ Giao với trục Ox: \(y=0\rightarrow x=-\dfrac{2}{3}\Rightarrow B\left(-\dfrac{2}{3};0\right)\)
Nối 2 điểm A và B ta được đường thẳng (d)
b.
- Gọi tọa độ giao điểm của đường thẳng \(\left(d\right)\) và \(\left(d'\right):y=x+6\) là: \(\left(x_0;y_0\right)\)
- Vì \(\left(x_0;y_0\right)\) thuộc đường thẳng \(\left(d\right)\) nên ta có:
\(y_0=-3x_0-2\) (1)
- Vì \(\left(x_0;y_0\right)\) thuộc đường thẳng \(\left(d'\right):y=x+6\) nên ta có:
\(y_0=x_0+6\) (2)
- Từ (1) và (2), ta có:
\(-3x_0-2=x_0+6\)
\(\Leftrightarrow-3x_0-x_0=6+2\)
\(\Leftrightarrow-4x_0=8\)
\(\Leftrightarrow x_0=-2\)
\(\rightarrow y_0=-2+6=4\)
Vậy tọa độ giao điểm 2 đường thẳng đó là: \(\left(-2;4\right)\)