Bài 5. Cho là các số thực dương. Chứng minh rằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge3\sqrt[3]{\dfrac{a^3\left(1+b\right)\left(1+c\right)}{64\left(1+b\right)\left(1+c\right)}}=\dfrac{3}{4}a\)
Tương tự: \(\dfrac{b^3}{\left(1+a\right)\left(1+c\right)}+\dfrac{1+a}{8}+\dfrac{1+c}{8}\ge\dfrac{3}{4}b\)
\(\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{1+a}{8}+\dfrac{1+c}{8}\ge\dfrac{3}{4}c\)
Cộng vế:
\(VT+\dfrac{3+a+b+c}{4}\ge\dfrac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\dfrac{1}{2}\left(a+b+c\right)-\dfrac{3}{4}\ge\dfrac{1}{2}.3\sqrt[3]{abc}-\dfrac{3}{4}=\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có \(a+b\ge2\sqrt{ab}\) (Cô-si 2 số) và \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}\) (Cô-si 2 số)
Nhân theo vế 2 BĐT trên, ta được \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\dfrac{1}{ab}}=4\).
ĐTXR \(\Leftrightarrow a=b\)
Sử dụng đánh giá quen thuộc: \(x^3+y^3\ge xy\left(x+y\right)\)
\(VT\le\dfrac{1}{ab\left(a+b+c\right)}+\dfrac{1}{bc\left(a+b+c\right)}+\dfrac{1}{ca\left(a+b+c\right)}\)
\(VT\le\dfrac{1}{a+b+c}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\dfrac{a+b+c}{\left(a+b+c\right)abc}=\dfrac{1}{abc}\)