K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2020

Số phần tử của không gian mẫu là n(Ω) = 6! 

Gọi A là biến cố 'nam ngồi đối diện nữ.'

Chọn chỗ cho học sinh nam thứ nhất có 6 cách.

Chọn chỗ cho học sinh nam thứ 2 có 4 cách (không ngồi đối diện học sinh nam thứ nhất)

Chọn chỗ cho học sinh nam thứ 3 có  2 cách (không ngồi đối diện học sinh nam thứ nhất, thứ hai).

Xếp chỗ cho 3 học sinh nữ : 3! cách.

=> n(A) =  6.4.2.3! = 288

Vậy P(A) = 288/6!

8 tháng 4 2019

Chọn A.

Số phần tử của không gian mẫu là n(W =) 6!.

Gọi  A là biến cố : "Các bạn học sinh nam ngồi đối diện các bạn nữ".

Chọn chỗ cho học sinh nam thứ nhất có 6 cách.

Chọn chỗ cho học sinh nam thứ 2 có 4 cách (không ngồi đối diện học sinh nam thứ nhất)

Chọn chỗ cho học sinh nam thứ 3 có 2 cách (không ngồi đối diện học sinh nam thứ nhất, thứ  hai).

Xếp chỗ cho 3 học sinh nữ : 3! cách.

Theo quy tắc nhân ta có  cách

7 tháng 1 2017

Chọn đáp án A.

17 tháng 10 2018

Đáp án là A

22 tháng 12 2017

Đáp án A

16 tháng 11 2018

14 tháng 4 2018

Chọn B.

Phương pháp: Sử dụng hoán vị và quy tắc nhân.

Cách giải: Xếp 12 học sinh vào 12 ghế có 12! cách xếp.

Đánh số ghế  như sau:

1

2

3

4

5

6

7

8

9

10

11

12

Chọn giới tính nam hoặc nữ có 2 cách.

Xếp nam hoặc nữ ngồi vào các ghế 1, 3, 5, 8, 10,12 có 6!= 720 cách.

Xếp các bạn giới tính còn lại vào 6 ghế còn lại có 6!= 720cách.

30 tháng 9 2017

Chọn C

Số phần tử của không gian mẫu: .

Gọi biến cố : “Xếp 10 học sinh vào 10 ghế sao cho mỗi học sinh nam đều ngồi đối diện một học sinh nữ”.

Giả sử đánh vị trí ngồi như bảng sau:

Cách 1: Xếp vị trí A 1  có 10 cách. Mỗi cách xếp vị trí  A 1  sẽ có 5 cách xếp vị trí B 1 .

Mỗi cách xếp vị trí  A 1 ,  B 1  có 8 cách xếp vị trí , tương ứng sẽ có 4 cách xếp vị trí B 2 .

Cứ làm như vậy thì số cách xếp thỏa mãn biến cố  là: 

Cách 2: Đánh số cặp ghế đối diện nhau là C1, C2, C3, C4, C5

Xếp  bạn nam vào 5 cặp ghế có 5! cách.

Ở mỗi cặp ghế, ta có 2 cách xếp một cặp nam, nữ ngồi đối diện.

Số phần tử của A là: 

13 tháng 11 2017

Chọn B

Số phần tử của không gian mẫu là số cách sắp xếp 8 học sinh vào 8 chỗ ngồi khác nhau. Suy ra  n ( Ω ) = 8!

Gọi A là biến cố xếp 8 học sinh sao cho mỗi học sinh nam đều ngồi đối diện với một học sinh nữ và không có hai học sinh cùng giới ngồi cạnh nhau. Ta đánh số các chỗ ngồi từ 1 đến 8 như sau:

Dãy 1:

1

2

3

4

Dãy 2:

8

7

6

5

Để sắp xếp các học sinh ngồi vào vị trí thỏa mãn yêu cầu bài toán ta sắp xếp như sau:

Trường hợp 1: 4 học sinh nam ngồi vào các số lẻ, 4 học sinh nữ ngồi vào các số chẵn. Trường hợp này có 4!4! cách.

Trường hợp 2: 4 học sinh nam ngồi vào các số chẵn, 4 học sinh nữ ngồi vào các số lẻ. Trường hợp này có 414! cách.

Do đó n(A) = 2.4!.4!

Vậy xác suất của biến cố A là 

29 tháng 6 2017

Phương pháp:

Xếp lần lượt chỗ ngồi cho từng học sinh nam và nữ sao cho mỗi học sinh nam đều ngồi đối diện với một học sinh nữ. Sử dụng quy tắc nhân.

Cách giải:

Xếp ngẫu nhiên 10 học sinh vào 10 ghế cho 10! cách xếp  ⇒ n Ω = 10 !

Gọi A là biến cố: “mỗi học sinh nam đều ngồi đối diện với một học sinh nữ”.

+) Xếp học sinh nam thứ nhất vào 1 trong 10 vị trí cho 10 cách xếp.

Chọn 1 trong 5 bạn nữ xếp ngồi đối diện với bạn nam thứ nhất có 5 cách xếp.

+) Xếp bạn nam thứ 2 vào 1 trong 8 vị trí còn lại có 8 cách xếp.

Chọn 1 trong 4 bạn nữ còn lại xếp ngồi đối diện với bạn nam thứ hai có 4 cách xếp.

+) Xếp bạn nam thứ 3 vào 1 trong 6 vị trí còn lại có 6 cách xếp.

Chọn 1 trong 3 bạn nữ còn lại xếp ngồi đối diện với bạn nam thứ ba có 3 cách xếp.

+) Xếp bạn nam thứ 4 vào 1 trong 4 vị trí còn lại có 4 cách xếp.

Chọn 1 trong 2 bạn nữ còn lại xếp ngồi đối diện với bạn nam thứ tư có 2 cách xếp.

+) Xếp bạn nam thứ 5 vào 1 trong 2 vị trí còn lại có 2 cách xếp.

Xếp 1 bạn nữ còn lại vào vị trí cuối cùng có 1 cách xếp.