K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2020

a, \(P=\left(\frac{1}{x-1}+\frac{x}{x^2-1}\right):\left(\frac{x}{x^2-1}\right)\)

\(=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{x}{x^2-1}\right)\)

\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{x}=\frac{2x+1}{x}\)

b, Ta có : \(\frac{2x+1}{x}=2\Leftrightarrow2x+1=2x\Leftrightarrow0\ne-1\)Vậy PT vô nghiệm 

13 tháng 3 2016

bai 1

1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0

<=>(2x)^2-5^2=0

<=>(2x+5)*(2x-5)=0

<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

Bài 2: 

Ta có: \(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+1}{\sqrt{x}+3}\)

Bài 1:

Để biểu thức nhận giá trị nguyên thì \(3\sqrt{x}+1⋮2\sqrt{x}-1\)

\(\Leftrightarrow6\sqrt{x}+2⋮2\sqrt{x}-1\)

\(\Leftrightarrow2\sqrt{x}-1\in\left\{1;-1;5\right\}\)

\(\Leftrightarrow2\sqrt{x}\in\left\{2;0;6\right\}\)

hay \(x\in\left\{4;0;36\right\}\)

23 tháng 8 2021

giúp e b2

 

1 tháng 12 2021

\(a,P=\dfrac{2x^2+2x+2+2x-1+x^2+6x+2}{\left(x-1\right)\left(x^2+x+1\right)}\\ P=\dfrac{3x^2+10x+3}{\left(x-1\right)\left(x^2+x+1\right)}\)

30 tháng 12 2018

\(2;A=\left(\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}\right):\left(\frac{1-x}{x+2}\right)\)

\(ĐKXĐ:\hept{\begin{cases}x^2-4\ne0\\1-x\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne\pm2\\x\ne1\end{cases}}\)

\(a,A=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{x+2}{1-x}\)

\(A=\left(\frac{x+x-2-2x-4}{\left(x+2\right)\left(x-2\right)}\right).\frac{x+2}{1-x}\)

\(A=\frac{-6}{\left(x+2\right)\left(x-2\right)}.\frac{x+2}{1-x}=\frac{-6}{\left(x-2\right)\left(1-x\right)}\)

b, Khi x = -4

\(A=\frac{-6}{\left(-4-2\right)\left(1+4\right)}=\frac{-6}{-6.5}=\frac{1}{5}\)

30 tháng 12 2018

cảm ơn bạn

27 tháng 8 2021

a) \(P=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right).\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\left(đk:x>0\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\left(\dfrac{1-x}{2\sqrt{x}}\right)^2=\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}.\dfrac{\left(x-1\right)^2}{4x}=\dfrac{-4\sqrt{x}\left(x-1\right)}{4x}=\dfrac{1-x}{\sqrt{x}}\)

b) \(P-\left(-2\sqrt{x}\right)=\dfrac{1-x}{\sqrt{x}}+2\sqrt{x}=\dfrac{1-x+2x}{\sqrt{x}}=\dfrac{1+x}{\sqrt{x}}>0\)

\(\Rightarrow P>-2\sqrt{x}\)

27 tháng 8 2021

a, ĐK: \(x\ge0;x\ne1\)

\(P=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\dfrac{\left(2-2x\right)^2}{16x}\)

\(=\dfrac{-4\sqrt{x}}{x-1}.\dfrac{4\left(x-1\right)^2}{16x}\)

\(=-\dfrac{x-1}{\sqrt{x}}\)

Câu 1:

b: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)

\(\dfrac{1}{x-3}-\dfrac{1}{x+3}+\dfrac{2x}{9-x^2}\)

\(=\dfrac{1}{x-3}-\dfrac{1}{x+3}-\dfrac{2x}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x+3-x+3-2x}{\left(x-3\right)\left(x+3\right)}=\dfrac{-2x+6}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=-\dfrac{2}{x+3}\)

c: ĐKXĐ: \(x\notin\left\{2;0\right\}\)

Sửa đề: \(\dfrac{x+1}{x-2}+\dfrac{4-5x}{x^3+4x}:\dfrac{x-2}{x^2+4}\)

\(=\dfrac{x+1}{x-2}+\dfrac{4-5x}{x\left(x^2+4\right)}\cdot\dfrac{x^2+4}{x-2}\)

\(=\dfrac{x+1}{x-2}+\dfrac{4-5x}{x\left(x-2\right)}\)

\(=\dfrac{x\left(x+1\right)+4-5x}{x\left(x-2\right)}=\dfrac{x^2+x-5x+4}{x\left(x-2\right)}\)

\(=\dfrac{x^2-4x+4}{x\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}=\dfrac{x-2}{x}\)