tìm các giá trị của x đề A=|x+1/2|+|9/4+x| đạt giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
Ta có A= \(\frac{3x-17}{4-x}=\frac{3x-12-5}{4-x}\)\(=\frac{3x-12}{4-x}-\frac{5}{4-x}=-3-\frac{5}{4-x}\)
=>A \(< -3\)
=> Để A đạt Min => \(\frac{5}{4-x}\) phải đạt Max => \(4-x\)phải đạt Min
có B=4-x \(\le\)4
(lại có đk : 4-x \(\ne\)0=> x\(\ne4;\)/ 4-x\(>\)0 ( do nếu 4-x <0 => A>-3 => chắc chắn không đạt Min)và \(x\ge0\)(do nếu x<0 => B>4 ( B không đạt Min)
=> \(0< 4-x\le4\) mà x là giá trị nguyên => B có giá trị nhỏ nhất = 1
=> x=3
khi x= 3 => A=-8
Sai thì bảo lại mình nhé
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)