Cộng các phân thức:
a) x/xy-y^2 + 2x-y/xy-x^2
b) 1/x+1 + 1/x-1 + 2x^2/x^2-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{x^2}{x+1}+\frac{2x}{x^2-1}+\frac{1}{x+1}+1\)
\(=\frac{x^2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\frac{x^3-x^2-2x+x-1-x^2-1}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^3-2x^2-x-2}{\left(x-1\right)\left(x+1\right)}\)
a) \(\dfrac{x^2}{x+1}+\dfrac{2x}{x^2-1}+\dfrac{1}{1+x+1}\) \(=\dfrac{x^2.\left(x-1\right)\left(x+2\right)}{\left(x+1\right).\left(x-1\right)\left(x+2\right)}+\dfrac{2x.\left(x+2\right)}{\left(x-1\right).\left(x+1\right).\left(x+2\right)}+\dfrac{\left(x-1\right).\left(x+1\right)}{\left(x-1\right)\left(x+1\right).\left(x+2\right)}\)
\(=\dfrac{x^2.\left(x-1\right).\left(x+2\right)+2x.\left(x+2\right)+\left(x-1\right)\left(x+1\right)}{\left(x+1\right).\left(x-1\right).\left(x+2\right)}\)
\(=\dfrac{x^4+x^3-2x^2+2x^2+4x+x^2-1}{\left(x-1\right)\left(x+1\right).\left(x+2\right)}\)
\(=\dfrac{x^4+x^3+x^2+4x-1}{\left(x^2-1\right).\left(x+2\right)}\)
\(=\dfrac{x^4+x^3+x^2+4x-1}{x^3+2x^2-x-2}\)
a) \(\dfrac{x^2-2x+1}{x+2}=\dfrac{\left(x-1\right)^2}{x+2}\)
Khi x=-3 ta có:
\(\dfrac{\left(-3-1\right)^2}{-3+2}=\dfrac{\left(-4\right)^2}{-1}=-4\)
Khi x=1 ta có:
\(\dfrac{\left(1-1\right)^2}{1+2}=0\)
b) \(\dfrac{xy+3y^2}{x+y}=\dfrac{y\left(x+3y\right)}{x+y}\)
Khi x=3 y=-1 ta có:
\(\dfrac{-1\cdot\left(3+3\cdot-1\right)}{3\cdot-1}=0\)
a)A=(2x+3y)(x2-xy+1)-x2(2x-y)-3x tại x=-1;y=2
Rút gọn:
A = 2x3 - 2x2y + 2x + 3x2y - 3xy2+ 3y - 2x3 + x2y - 3x (phá ngoặc)
=> A = 2x2y - 3xy2 - x + 3y
Thay x = -1 và y = 2; ta được:
A = 23
b)B=2xy.(1/4x2-3y)+5y(xy-x3+1) tại x=1;y=1/2
B = x3y/2 - 6xy2 + 5xy2 - 5x3y + 5y (phá ngoặc)
B = -9x3y/10 - xy2 + 5y
Thay x = 1 và y = 1/2 ta được:
B = 0
Bài này tuy có hơi cồng kềnh chút nhưng chỉ cần em chịu khó phá ngoặc là sẽ giải quyết được nhé!
a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)
\(=4x^2-4x+5-8x^2+24x-18\)
\(=-4x^2+20x-13\)
e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)
1) \(2\left(x-1\right)^3-\left(x-1\right)=\left(x-1\right)\left(2\left(x-1\right)^2-1\right)\)
2) \(y\left(x-2y\right)^2+xy^2\left(2y-x\right)=\left(2y-x\right)\left(2\left(2y-x\right)+1\right)=\left(2y-x\right)\left(4y-2x+1\right)\)
3) \(xy\left(x+y\right)-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\) (xem lại đề sửa -2x thành -x mới đúng)
4) \(xy\left(x-3y\right)-2x+6y=xy\left(x-3y\right)-2\left(x-3y\right)=\left(x-3y\right)\left(xy-2\right)\)
a, \(\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}=\frac{x}{y\left(x-y\right)}+\frac{2x-y}{x\left(y-x\right)}\)
\(=\frac{x^2}{xy\left(x-y\right)}-\frac{2xy-y^2}{xy\left(x-y\right)}=\frac{\left(x-y\right)^2}{xy\left(x-y\right)}=\frac{x-y}{xy}\)
b, \(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2x^2}{x^2-1}=\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x^2}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x-1+x+1+2x^2}{\left(x-1\right)\left(x+1\right)}=\frac{2x+2x^2}{\left(x-1\right)\left(x+1\right)}=\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{2x}{x-1}\)