K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng định lí Pitago vào tam giác vuông ABO, ta có:

A O 2 = A B 2 + B O 2

Suy ra: A B 2 = A O 2 - B O 2 = 5 2 - 3 2  = 16

AB = 4 (cm)

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

DB = DM

EM = EC

Chu vi của tam giác ADE bằng:

AD + DE + EA = AD + DB + AE + EC

 

= AB + AC = 2AB = 2.4 = 8 (cm)

13 tháng 11 2023

Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

Ta có: OB=OC

AB=AC

Do đó: OA là đường trung trực của BC

=>OA\(\perp\)BC

21 tháng 1 2021

A E C D B M H O

Áp dụng đlí Py - ta - go cho tam giác BAO vuông tại B , ta có :

\(OA^2=OB^2+AB^2\)

\(AB^2=OA^2-OB^2=5^2-3^2=16\)

\(AB^2=16\Rightarrow AB=4cm\)

=> AC = 4cm

Theo tính chất 2tt cắt nhau , ta có :

DB = DM ; EC = EM

=> AD + DE + AE = AB + AC = 4 + 4 = 8

Vậy : chu vi tam giác ADE là : 8cm

16 tháng 7 2020

Vì cậu làm câu a) rồi nên mình chỉ làm 2 câu còn lại thôi nhá (:

O H E C B D M A

a. Ta có: AB = AC (tính chất hai tiếp tuyến cắt nhau). Suy ra  \(\Delta ABC\)cân tại A.

AO là tia phân giác của góc BAC (tính chất hai tiếp tuyến cắt nhau)

Suy ra AO là đường cao của tam giác ABC (tính chất tam giác cân)

Ta có: AO vuông góc với BC tại H

Lại có: \(AB\perp OB\)( tính chất tiếp tuyến )

Tam giác ABO vuông tại B có \(BH\perp AO\)

Theo hệ thức lượng trong tam giác vuông, ta có:

\(OB^2=OH.OA\Rightarrow OH=\frac{OB^2}{OA}=\frac{32}{5}=1,8\left(cm\right)\)

b. Áp dụng định lí Pitago vào tam giác vuông ABO, ta có:

AO2 = AB2 + BO2

Suy ra: AB2 = AO2 – BO2 = 52 – 32 = 16

AB = 4 (cm)

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

DB = DM

EM = EC

Chu vi của tam giác ADE bằng:

AD + DE + EA = AD + DB + AE + EC

= AB + AC = 2AB = 2 . 4 = 8 ( cm )

28 tháng 1 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo tính chất của hai tiếp tuyến cắt nhau ta có :

DB = DM

EM = EC

Chu vi của tam giác ADE bằng :

AD + DE + EA = AD + DM + ME + EA

= AD + DB + AE + EC = AB + AC = 2AB

Mà tứ giác ABOC là hình vuông (chứng minh trên) nên:

AB = OB = 2 (cm)

Vậy chu vi của tam giác ADE bằng: 2.2 = 4 (cm)

a: Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

=>ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

DB,DM là các tiếp tuyến

Do đó: DB=DM

Xét (O) có

EM,EC là các tiếp tuyến

Do đó: EM=EC

Chu vi tam giác ADE là:

\(C_{ADE}=AD+DE+AE\)

\(=AD+DM+ME+AE\)

\(=AD+DB+CE+AE\)

\(=AB+AC=2\cdot AB\)

14 tháng 1 2017

Đáp án B

* Theo tính chất hai tiếp tuyến cắt nhau ta có:

AB = AC; DB = DM; EM = EC

suy ra: DE = DM + ME = DB + EC.

* Chu vi tam giác ADE là:

AD + AE + DE = AD + AE + DB + EC

= (AD + DB ) + ( AE + EC ) = AB + AC = 2AB ( vì AB = AC )

10 tháng 12 2023

a: Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

=>ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC và AO là phân giác của góc BAC

Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

từ (1) và (2) suy ra AO là đường trung trực của BC

=>OA\(\perp\)BC

c: Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

Ta có: AO là phân giác của góc BAC

=>\(\widehat{BAC}=2\cdot\widehat{BAO}=60^0\)

Ta có: ΔOBA vuông tại B

=>\(BO^2+BA^2=OA^2\)

=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(BA=R\sqrt{3}\)

Xét ΔBAC có AB=AC và \(\widehat{BAC}=60^0\)

nên ΔBAC đều

=>\(S_{BAC}=\dfrac{BA^2\cdot\sqrt{3}}{4}=\dfrac{3R^2\cdot\sqrt{3}}{4}\)