K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2020

giúp với mn ơi

NV
23 tháng 12 2020

ĐKXĐ: \(-1\le x\le1\)

Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)

\(\Rightarrow x^2=1-t^2\)

Phương trình trở thành: \(1-t^2+t=m\Leftrightarrow-t^2+t+1=m\)

Xét hàm \(f\left(t\right)=-t^2+t+1\) trên \(\left[0;1\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[0;1\right]\)

\(f\left(0\right)=1\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{5}{4}\) ; \(f\left(1\right)=1\)

\(\Rightarrow1\le f\left(t\right)\le\dfrac{5}{4}\)

\(\Rightarrow\) Pt đã cho có nghiệm khi và chỉ khi \(1\le m\le\dfrac{5}{4}\Rightarrow S=\dfrac{9}{4}\)