K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2021

hoc24.vn

Khác số chút thoyy.

15 tháng 1 2021

Cảm ơn bạn nhiều !

23 tháng 11 2019

Câu hỏi của nguyen phuong thao - Toán lớp 7 - Học toán với OnlineMath

13 tháng 8 2017

1) ta có: A= x^3 -8y^3=> A=(x-2y)(x^2 +2xy+4y^2)=>A=5.(29+2xy)   (vì x-2y=5 và x^2+4y^2=29)     (1)

Mặt khác : x-2y=5(gt)=> (x-2y)^2=25=> x^2-4xy+4y^2=25=>29-4xy=25(vì x^2+4y^2=29)

                                                                                          => xy=1    (2)

Thay (2) vào (1) ta đc: A= 5.(29+2.1)=155

Vậy gt của bt A là 155

2) theo bài ra ta có: a+b+c=0 => a+b=-c=>(a+b)^2=c^2=> a^2 +b^2+2ab=c^2=>c^2-a^2-b^2=2ab

=> \(\left(c^2-a^2-b^2\right)^2=4a^2b^2\)

=>\(c^4+a^4+b^4-2c^2a^2+2a^2b^2-2b^2c^2=4a^2b^2\)

=>\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)

=>\(2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)

=> \(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)^2\) (đpcm)

17 tháng 4 2022

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow14+2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=-7\)

Suy ra : \(\left(ab+bc+ac\right)^2=49\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=49\)

\(a^2+b^2+c^2=14\Leftrightarrow\left(a^2+b^2+c^2\right)^2=196\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=196\)

\(\Leftrightarrow a^4+b^4+c^4+2.49=256\)  \(\Leftrightarrow a^4+b^4+c^4=98\)

Vậy ... 

17 tháng 4 2022

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc +2ca=0\)

\(\Leftrightarrow2ab+2bc+2ca=-14\)

\(\Leftrightarrow ab+bc+ca=-7\)

\(\Rightarrow\left(ab+bc+ca\right)^2=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=49\).

\(a^2+b^2+c^2=14\)

\(\Rightarrow\left(a^2+b^2+c^2\right)^2=14^2=196\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=196\)

\(\Leftrightarrow a^4+b^4+c^4+2.49=196\)

\(\Leftrightarrow a^4+b^4+c^4=98\)

21 tháng 4 2017

Ta có:

\(ab+bc+ca=\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\frac{0-2010}{2}=-1005\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\)

\(=\left(-1005\right)^2-2abc.0=1005^2\)

\(\Rightarrow A=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(=2010^2-1005^2=2.1005^2=2020050\)