Cho x, y, z thõa mãn: 2021 phần x + y = 2020 phần y + z = 1 phần z + x (giả thiết là các tỉ số đề có nghĩa). Tính giá trị biểu thức 3x + 4y +81z phần 4x+ 3y - 109z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý nhá
Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.
b) Bạn chỉ cần cho tử và mẫu mũ 3 lên. theé là dễ r
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
tự tính tiếp =)
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{x+2y+z}{9a}\)( 1 )
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{2x+y-z}{9b}\)( 2 )
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{4x-4y+z}{9c}\)( 3 )
Từ ( 1 ) , ( 2 ) và ( 3 )
\(\frac{x+2y-z}{9a}=\frac{2x+y-z}{9b}=\frac{4x-4y+z}{9c}\)hay \(\frac{9a}{x+2y-z}=\frac{9b}{2x+y-z}=\frac{9c}{4x-4y+z}\)
\(\Rightarrow\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
Xét \(x+y+z=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)
\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)
Xét \(x+y+z\ne0\) thì ta có:
\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)
\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)
Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)
Nếu bị lỗi thì bạn có thể xem đây nhé:
Lời giải:
\(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=\frac{1}{x+y-z}\Leftrightarrow \frac{x+y}{xy}=\frac{1}{z}+\frac{1}{x+y-z}=\frac{x+y}{z(x+y-z)}\)
\(\Leftrightarrow (x+y)(\frac{1}{xy}-\frac{1}{z(x+y-z)})=0\)
\(\Leftrightarrow (x+y).\frac{z(x+y-z)-xy}{xyz(x+y-z)}=0\)
\(\Leftrightarrow (x+y).\frac{(z-x)(y-z)}{xyz(x+y-z)}=0\)
\(\Leftrightarrow (x+y)(z-x)(y-z)=0\)
Xét các TH sau:
TH1: $x+y=0$. TH này loại do ĐKXĐ $x,y>0$
TH2: $z-x=0\Leftrightarrow z=x$
$\Leftrightarrow \frac{1}{y}=\frac{2020}{2021}$
\(M=\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}=\frac{2}{\sqrt{y}}=2\sqrt{\frac{2020}{2021}}\)
TH3: $y-z=0$ tương tự TH2, ta có \(M=2\sqrt{\frac{2020}{2021}}\)
link này : Câu hỏi của haru - Toán lớp 7 - Học toán với OnlineMath