cho C =x^2-6x+9/x^2-3x.Tìm x để C =1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: \(x\in\mathbb{R}\)
\(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}=1\)
\(\Leftrightarrow \sqrt{(x-3)^2}-\sqrt{(x+3)^2}=1\)
\(\Leftrightarrow |x-3|-|x+3|=1(*)\)
Nếu $x\geq 3$:
\((*)\Leftrightarrow x-3-(x+3)=1\Leftrightarrow -6=1\) (vô lý- loại)
Nếu \(-3\leq x< 3\)
\((*)\Leftrightarrow 3-x-(x+3)=1\)
\(\Leftrightarrow -2x=1\Leftrightarrow x=\frac{-1}{2}\) (thỏa mãn)
Nếu \(x< -3\)
\((*)\Leftrightarrow (3-x)-(-x-3)=1\)
\(\Leftrightarrow 6=1\) (vô lý)
Vậy......
a/ \(A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}\)
\(=\left|x-3\right|-\left|x+3\right|=\left|x-3\right|-x-3\)
Nếu x\(\ge\)3\(\Rightarrow\left|x-3\right|=x-3\Rightarrow A=x-3-x-3=-6\)
Nếu x<3\(\Rightarrow\left|x-3\right|=3-x\Rightarrow A=3-x-x-3=-2x\)
b/ Có A=1\(\Rightarrow-2x=1\Leftrightarrow x=\frac{-1}{2}\)
a) \(A=|x-3|-|x+3|\)
*TH1 : Với x < -3, ta có: A = 3 - x + x + 3 = 6
*TH2 : Với -3 < x < 3, ta có: A = 3 - x - x -3 = -2x
*TH3 : Với x > 3, ta có: A = x - 3 - x - 3 = -6
b) Để A = 1, ta thấy TH1 và TH3 không t/m nên A = -2x =1
=> \(x=-\frac{1}{2}\) (t/m)
Vậy....
1)
a) \(\Leftrightarrow\left(4x-1\right)^2=9\Leftrightarrow4x-1=+-3\Leftrightarrow4x=1+-3\Leftrightarrow x=\frac{1+-3}{4}\)
b) \(x^3-3x^2+3x-1+3x^2-12x+1=0\Leftrightarrow x^3-9x=0\Leftrightarrow x^2\left(x-9\right)=0\)
=> x=0 hoặc x=9
c) \(x^2-6x+9=25\Leftrightarrow\left(x-3\right)^2=25\Leftrightarrow x-3=+-5\Leftrightarrow x=3+-5\)
d) câu này là chia hết cho 32 hả??
1) Ta có:
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz).
Câu 2:
\(\frac{x^2-y^2+6x+9}{x+y+3}\)
\(=\frac{x^2-y^2+x^2+6x+9-x^2}{x+y+3}\)
\(=\frac{ \left(x+3\right)^2-y^2}{x+y+3}\)
\(=\frac{\left(x-y+3\right)\left(x+y+3\right)}{x+y+3}\)
\(=x-y+3\)
\(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}\)
\(=\frac{1}{\left(x+3\right)^2}+\frac{-1}{\left(x-3\right)^2}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{\left(x-3\right)^2-\left(x+3\right)^2+x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^2-6x+9-x^2-6x-9+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^3-21x}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}\)
\(=\frac{1}{\left(x+3\right)^2}-\frac{1}{\left(x-3\right)^2}+\frac{x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{\left(x-3\right)^2}{\left(x+3\right)^2\left(x-3\right)^2}-\frac{\left(x+3\right)^2}{\left(x+3\right)^2\left(x-3\right)^2}+\frac{x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^2-6x+9-x^2-6x-9+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^3-21x}{\left(x+3\right)^2\left(x-3\right)^2}\)
Câu 1:Tìm x biết
a.\(\left(x-1\right)\left(x+2\right)-x^2=6\)
\(\Rightarrow x^2+x-2-x^2=6\)
\(\Rightarrow x-2=6\)
\(\Rightarrow x=8\)
b.\(5x\left(x-2017\right)-x+2017=0\)
\(\Rightarrow5x\left(x-2017\right)-\left(x-2017\right)=0\)
\(\Rightarrow\left(x-2017\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2017=0\\5x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{5}\end{matrix}\right.\)
câu 2: Cho biểu thức M=\(\dfrac{4x^2-9}{6x^2-18x}+\dfrac{2x^2+9}{6x\left(x-3\right)}\)
a. Tìm điều kiện của x để giá trị biểu thức M được xác định
ĐKCĐ của biểu thức M là :
\(\left\{{}\begin{matrix}6x^2-18x\ne0\\6x\left(x-3\right)\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne0\\x\ne3\end{matrix}\right.\)
b.Tính giá trị của biểu thức M với x = -2
\(M=\dfrac{4x^2-9}{6x^2-18}+\dfrac{2x^2+9}{6x\left(x-3\right)}\)
\(=\dfrac{4x^2-9}{6x\left(x-3\right)}+\dfrac{2x^2+9}{6x\left(x-3\right)}\)
\(=\dfrac{4x^2-9+2x^2+9}{6x\left(x-3\right)}\)
\(=\dfrac{6x^2}{6x\left(x-3\right)}=\dfrac{x}{x-3}\)
Thay x = - 2 vào biểu thưcs M ,có :
\(\dfrac{-2}{-2-3}=\dfrac{-2}{-5}=\dfrac{2}{5}\)
Vậy tại x= - 2 giá trị biểu thức M là \(\dfrac{2}{5}\)
2)
để \(B=\dfrac{x^2-9}{x^2-6x+9}=0\)
\(\Rightarrow x^2-9=0\)
\(\Rightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy x=3 hoặc x=-3 để B=0
câu d
\(D=\dfrac{\left(1-x^2\right)}{x}\left(\dfrac{x^2}{x+3}-1\right)+\dfrac{3x^2-14x+3}{x^2+3x}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{\left(1-x^2\right)\left(x^2-x-3\right)+3x^2-14x+3}{x\left(x+3\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{x^2-x-3-x^4+x^3-3x^2+3x^2-14x+3}{x\left(x+3\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-x^4+x^3+x^2-15x}{x\left(x+3\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-x\left(x^3-x^2-x+15\right)}{x\left(x+3\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-\left(x^3-x^2-x+15\right)}{\left(x+3\right)}\end{matrix}\right.\)