K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 12 2020

Nhận thấy \(x=0\) không phải nghiệm, hệ tương đương:

\(\left\{{}\begin{matrix}21y-20=\dfrac{1}{x^3}\\y^3+20=\dfrac{21}{x}\end{matrix}\right.\)

Cộng vế với vế:

\(y^3+21y=\dfrac{1}{x^3}+\dfrac{21}{x}\)

\(\Leftrightarrow y^3-\dfrac{1}{x^3}+21\left(y-\dfrac{1}{x}\right)=0\)

\(\Leftrightarrow\left(y-\dfrac{1}{x}\right)\left(y^2+\dfrac{y}{x}+\dfrac{1}{x^2}\right)+21\left(y-\dfrac{1}{x}\right)=0\)

\(\Leftrightarrow\left(y-\dfrac{1}{x}\right)\left(y^2+\dfrac{y}{x}+\dfrac{1}{x^2}+21\right)=0\)

\(\Leftrightarrow y=\dfrac{1}{x}\)

\(\Leftrightarrow...\)

7 tháng 10 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\3-y+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}x-2x-1=3\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\left(-2\right)+1=-3\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}2x+3x-6=4\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\ 4,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y+2=3y+8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\\ 5,\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\\dfrac{3+3y}{2}-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\3+3y-8y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y+1}{2}\\y=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{1}{5}\end{matrix}\right.\)

30 tháng 7 2021

a, ĐK: \(x,y\ge0\)

\(hpt\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3\sqrt{y}}{\sqrt{x+3}-\sqrt{x}}=3\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=\sqrt{x+3}\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+3}=x+1\)

\(\Leftrightarrow x+3=x^2+2x+1\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\left(l\right)\end{matrix}\right.\)

Thay \(x=1\) vào hệ phương trình đã cho ta được \(y=1\)

Vậy pt đã cho có nghiệm \(x=y=1\)

30 tháng 7 2021

b, \(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x+\dfrac{1}{2}\right)^2=\left(y+\dfrac{1}{2}\right)^2\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x+y=-1\end{matrix}\right.\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2-3x=0\end{matrix}\right.\left(1\right)\\\left\{{}\begin{matrix}x+y=-1\\x^2+y^2=-3\end{matrix}\right.\left(vn\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}x=y=3\\x=y=0\end{matrix}\right.\)

Vậy ...

29 tháng 7 2021

a, Cộng vế theo vế hai phương trình ta được:

\(x^2+y^2+2xy+x+y=2\)

\(\Leftrightarrow\left(x+y\right)^2+x+y-2=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x+y+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=1\\x+y=-2\end{matrix}\right.\)

TH1: \(x+y=1\)

\(pt\left(2\right)\Leftrightarrow xy+1=-1\Leftrightarrow xy=-2\)

Ta có hệ: \(\left\{{}\begin{matrix}x+y=1\\xy=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\xy=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\end{matrix}\right.\)

TH2: \(x+y=-2\)

\(pt\left(2\right)\Leftrightarrow xy-2=-1\Leftrightarrow xy=1\)

Ta có hệ: \(\left\{{}\begin{matrix}x+y=-2\\xy=1\end{matrix}\right.\Leftrightarrow x=y=-1\)

 

29 tháng 7 2021

b, \(\left\{{}\begin{matrix}x^3-y^3=7\left(x-y\right)\\x^2+y^2=x+y+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2+xy-7\right)=0\\x^2+y^2=x+y+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x^2+y^2+xy=7\end{matrix}\right.\\x^2+y^2=x+y+2\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x=y\\x^2+y^2=x+y+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x^2-x-1=0\end{matrix}\right.\)

\(\Leftrightarrow x=y=\dfrac{1\pm\sqrt{5}}{2}\)

TH2: \(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^2+y^2=x+y+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=7\\\left(x+y\right)^2-2xy-x-y=2\end{matrix}\right.\)

Đặt \(x+y=u;xy=v\)

Hệ trở thành: \(\left\{{}\begin{matrix}u^2-v=7\\u^2-2v-u=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\u^2-2\left(u^2-7\right)-u=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\u^2+u-12=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\\left[{}\begin{matrix}u=3\\u=-4\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}v=2\\u=3\end{matrix}\right.\\\left\{{}\begin{matrix}v=9\\u=-4\end{matrix}\right.\end{matrix}\right.\)

Với \(\left\{{}\begin{matrix}v=2\\u=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy=2\\x+y=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\end{matrix}\right.\)

Với \(\left\{{}\begin{matrix}v=9\\u=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy=9\\x+y=-4\end{matrix}\right.\left(vn\right)\)

12 tháng 1 2020

\(\left\{{}\begin{matrix}5\left(x+2y\right)=4x-1\\2x+4=3\left(x-5y\right)-20\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x+10y=4x-1\\2x+4=3x-15y-20\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+10y=-1\left(1\right)\\x-15y=24\left(2\right)\end{matrix}\right.\)

Lấy (1)-(2): \(25y=-25\Leftrightarrow y=-1\) thay vào (1) \(\Leftrightarrow x=9\)

30 tháng 7 2021

a, \(\left\{{}\begin{matrix}x+y=4\\\left(x^2+y^2\right)\left(x^3+y^3\right)=280\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left(x^2+y^2\right)\left(x^2+y^2-xy\right)=70\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left(16-2xy\right)\left(16-3xy\right)=70\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\3x^2y^2-40xy+93=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left[{}\begin{matrix}xy=\dfrac{31}{3}\\xy=3\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+y=4\\xy=\dfrac{31}{3}\end{matrix}\right.\)

Phương trình này vô nghiệm

Vậy hệ đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(1;3\right);\left(3;1\right)\right\}\)

30 tháng 7 2021

b, ĐK: \(xy>0\)

\(\left\{{}\begin{matrix}\sqrt{\dfrac{2x}{y}}+\sqrt{\dfrac{2y}{x}}=3\\x-y+xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x}{y}+\dfrac{2y}{x}+4=9\\x-y+xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2+y^2\right)=5xy\\x-y+xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(x-2y\right)=0\\x-y+xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}2x=y\\x=2y\end{matrix}\right.\\x-y+xy=3\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}y=2x\\x-y+xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2x\\2x^2-x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2x\\\left(x+1\right)\left(2x-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=-2\\x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=3\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x=2y\\x-y+xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y^2+y-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

Vậy ...

NV
26 tháng 7 2021

- Với \(xy=0\) không phải nghiệm

- Với \(xy\ne0\) hệ tương đương

\(\left\{{}\begin{matrix}3x-2=\dfrac{1}{y^3}\\x^3+2=\dfrac{3}{y}\end{matrix}\right.\)

Đặt \(\dfrac{1}{y}=z\Rightarrow\left\{{}\begin{matrix}3x-2=z^3\\x^3+2=3z\end{matrix}\right.\)

\(\Rightarrow x^3+3x=z^3+3z\)

\(\Leftrightarrow x^3-z^3+3\left(x-z\right)=0\)

\(\Leftrightarrow\left(x-z\right)\left(x^2+zx+z^2+3\right)=0\)

\(\Leftrightarrow x=z\)

Thế vào \(x^3+2=3z\Rightarrow x^3+2=3x\)

\(\Leftrightarrow x^3-3x+2=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-2\Rightarrow y=-\dfrac{1}{2}\end{matrix}\right.\)

15 tháng 3 2021

\(\Leftrightarrow\left\{{}\begin{matrix}xy-3x+2y-6=xy+1\\2x+2y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y-3x=7\\2x+2y=5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\y=\dfrac{29}{10}\end{matrix}\right.\)

15 tháng 3 2021

Cảm ơn bạn

NV
27 tháng 7 2021

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)\left(x+y-2\right)=6\\\left(x-1\right)^2+\left(y-1\right)^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)\left(x+y-2\right)=6\\\left(x+y-2\right)^2-2\left(x-1\right)\left(y-1\right)=5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)=v\\x+y-2=u\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}uv=6\\u^2-2v=5\end{matrix}\right.\) \(\Rightarrow u^2-\dfrac{12}{u}=5\)

\(\Rightarrow u^3-5u-12=0\)

\(\Leftrightarrow\left(u-3\right)\left(u^2+3u+4\right)=0\)

\(\Leftrightarrow u=3\Rightarrow v=2\)

\(\Rightarrow\left\{{}\begin{matrix}x+y-2=3\\\left(x-1\right)\left(y-1\right)=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=5-x\\\left(x-1\right)\left(y-1\right)=2\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)\left(5-x-1\right)=2\)

\(\Leftrightarrow...\) em tự hoàn thành bài toán

27 tháng 7 2021

Mình không biết đúng hay không nhưng mình thay vào không đúng á.