K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2015

cậu hỏi hay quá ta

 

21 tháng 2 2017

\(\frac{2n+3}{7}\)Có giá trị là nguyên khi

\(2n+3⋮7\)

=>2n+3+4-4\(⋮\)7

=> 2n:7 du 4

=> n:7 dư 2

=> n=7k+2

Vậy n=7k+2(k\(\in\)Z)

2 tháng 8 2023

\(A=n^4+2n^3+2n^2+n+7\)

\(\Rightarrow A=n^4+2n^3+n^2+n^2+n+7\)

\(\Rightarrow A=\left(n^2+n\right)^2+n^2+n+\dfrac{1}{4}+\dfrac{27}{4}\)

\(\Rightarrow A=\left(n^2+n\right)^2+\left(n+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)

\(\Rightarrow A>\left(n^2+n\right)^2\left(1\right)\)

Ta lại có :

\(\left(n^2+n+1\right)^2-A\)

\(=n^4+n^2+1+2n^3+2n^2+2n-n^4-2n^3-2n^2-n-7\)

\(=n^2+n-6\)

Để \(n^2+n-6>0\)

\(\Leftrightarrow\left(n+3\right)\left(n-2\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}n< -3\\n>2\end{matrix}\right.\) \(\Rightarrow\left(n^2+n+1\right)^2>A\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\left(n^2+n\right)^2< A< \left(n^2+n+1\right)^2\)

Nên A không phải là số chính phương

Xét \(-3\le n\le2\)

Để A là số chính phương

\(\Rightarrow n\in\left\{-3;-2;-1;0;1;2\right\}\)

Thay các giá trị n vào A ta thấy với \(n=-3;n=2\) ta đều được \(A=49\) là số chính phương

\(\Rightarrow\left[{}\begin{matrix}n=-3\\n=2\end{matrix}\right.\) thỏa mãn đề bài

16 tháng 4 2022

Mình mới học lớp 5 thôi nha

Mong bạn thông cảm

 

12 tháng 6 2022

 👌🏻

5 tháng 1 2021

\(A=\frac{1-6n}{2n-3}=\frac{-6n+9-8}{2n-3}=-3+\frac{-8}{2n-3}\)

Để \(A\in Z\Rightarrow\frac{-8}{2n-3}\in Z\)

\(\Rightarrow-8⋮2n+3\)

\(\Rightarrow2n+3\inƯ\left(-8\right)\)

\(\Rightarrow2n+3\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Vì \(2n+3\)là số lẻ 

\(\Rightarrow2n+3\in\left\{1;-1\right\}\)

\(\Rightarrow2n\in\left\{-2;-4\right\}\)

\(\Rightarrow n\in\left\{-1;-2\right\}\)

Vậy...

5 tháng 1 2021

A=\(\frac{1-6n}{2n-3}\)

=\(\frac{-6n+9-8}{2n-3}\)

\(-3+\frac{-8}{2n-3}\)

để \(A\inℤ\Leftrightarrow\frac{-8}{2n-3}\inℤ\)

\(\Leftrightarrow-8⋮2n+3\)

\(\Leftrightarrow2n+3\inƯ\left(-8\right)\)

MÀ Ư(-8)=\(\hept{\pm1;\pm2;\pm4;\pm8}\)

VÌ 2n+3 là số lẻ nên ta có bảng:

2n+31-1
2n-2-4
n-1-2

vậy n\(\in\hept{-1;-2}\)

thì A là 1 số nguyên

a: 12/3n-1 là số nguyên khi 3n-1 thuộc Ư(12)

=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}

mà n là số nguyên

nên n thuộc {0;1;-1}

c: 2n+5/n-3 là số nguyên

=>2n-6+11 chia hết cho n-3

=>n-3 thuộc {1;-1;11;-11}

=>n thuộc {4;2;14;-8}

31 tháng 1 2021

Xét n=0 không thỏa mãn.

Xét n≥1

Với n∈N thì:A=n4+2n3+2n2+n+7=(n2+n)2+n2+n+7>(n2+n)2

Mặt khác, xét :

A−(n2+n+2)2=−3n2−3n+3<0 với mọi n≥1

⇔A<(n2+n+2)2

Như vậy (n2+n)2<A<(n2+n+2)2, suy ra để $A$ là số chính phương thì

A=(n2+n+1)2⇔n4+2n3+2n2+n+7=(n2+n+1)2

⇔−n2−n+6=0⇔(n−2)(n+3)=0

Suy ra 

2 tháng 8 2023

2

27 tháng 9 2018

\(n^4+2n^3+2n^2+n+7=k^2\)

\(\Leftrightarrow\left(n^2+n\right)^2+\left(n^2+n\right)+7=k^2\)

\(\Leftrightarrow4\left(n^2+n\right)^2+4\left(n^2+n\right)+1+27=4k^2\)

\(\Leftrightarrow\left(2n^2+2n+1\right)^2-4k^2=-27\)

\(\Leftrightarrow\left(2n^2+2n+1-2k\right)\left(2n^2+2n+1+2k\right)=-27\)

Làm nôt

16 tháng 3 2022

\(\dfrac{2n+5}{n-3}=\dfrac{\left(2n-6\right)+11}{n-3}=\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\)

Để biểu thức trên là số nguyên thì \(\dfrac{11}{n-3}\) nguyên\(\Rightarrow11⋮\left(n-3\right)\)\(\Rightarrow n-3\inƯ\left(11\right)\)

Ta có bảng:

n-3-11-1111
n-82414

Vậy \(n\in\left\{-8;2;4;14\right\}\)

16 tháng 3 2022

\(\dfrac{2n+5}{n-3}=2+\dfrac{11}{n-3}\left(n\ne3\right).\)

Để \(\dfrac{2n+5}{n-3}\in Z.\Leftrightarrow n-3\inƯ\left(11\right)\) \(=\left\{1;-1;11;-11\right\}.\)

\(\Rightarrow n\in\left\{4;2;14;-8\right\}.\)

 

25 tháng 2 2016

Ta có:2n-1 chia hết cho 7

=>2n-1\(\in\)Ư(7)={-7,-1,1,7}

=>2n\(\in\){-6,0,2,8}

=>n\(\in\){-3,0,1,4}

25 tháng 2 2016

Bạn viết thêm 

Mà n là số nguyên dương nên n\(\in\){0,1,4}