K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trong mp(SDA), gọi E là giao điểm của SG với AD

Trong mp(SBC), gọi K là giao điểm của SH với BC

Xét ΔSAD có

G là trọng tâm của ΔSAD
E là giao điểm của SG với AD

Do đó: E là trung điểm của AD

Xét ΔSBC có

H là trọng tâm của ΔSBC

SH cắt BC tại K

Do đó: K là trung điểm của BC

Xét hình thang ABCD(AB//CD) có

E,K lần lượt là trung điểm của AD,BC

=>EK là đường trung bình

=>EK//AB

Xét ΔSDE có

SE là đường trung tuyến

G là trọng tâm

Do đó: \(\dfrac{SG}{SE}=\dfrac{2}{3}\)

Xét ΔSBC có

H là trọng tâm của ΔSBC

SK là đường trung tuyến

Do đó: \(\dfrac{SH}{SK}=\dfrac{2}{3}\)

Xét ΔSEK có \(\dfrac{SG}{SE}=\dfrac{SH}{SK}\left(=\dfrac{2}{3}\right)\)

nên GH//EK

mà EK//AB

nên GH//AB

Ta có: GH//AB

AB\(\subset\)(SAB)

GH không nằm trong mp(SAB)

Do đó: GH//(SAB)

25 tháng 3 2017

Chọn A

29 tháng 1 2019

22 tháng 12 2020

Hình câu c là tui vẽ riêng ra cho dễ nhìn thôi, còn hình vẽ trình bày vô bài lấy hình chung ở câu a và b nhó :v     

                  undefined undefined

 

23 tháng 12 2020

cảm ơn bạn nha

10 tháng 5 2017

Đáp án D.

10 tháng 7 2019

15 tháng 10 2019

Đáp án là A

3 tháng 12 2018

Đáp án A

Qua G kẻ đường thẳng d song song với AB và cắt SA, SB lần lượt tại hai điểm Q, P. Vì MN là đường trung bình của ABCD ⇒ MN//AB

Do đó MN//PQ. Vậy giao tuyến của mặt phẳng (MNG) và (SAB) là PQ.

Mặt phẳng (MNG) cắt khối chóp S.ABCD theo thiết diện là tứ giác MNPQ

Vì MN//PQ suy ra MNPQ là hình thang

Để MNPQ là hình bình hành  ⇔ MN=PQ (1)

Gọi I là trung điểm của AB, G là trọng tâm tam giác  S A B ⇒ S G S I = 2 3

Tam giác SAB có  P Q / / A B ⇒ P Q A B = S G S I = 2 3 ⇔ P Q = 2 3 A B (2)

Mà MN là đường trung bình  hình thang  A B C D ⇒ M N = A B + C D 2 (3)

Từ (1) , (2) và (3) suy ra 2 3 A B = A B + C D 2 ⇔ 4 A B = 3 A B + 3 C D ⇔ A B = 3 C D .

6 tháng 12 2017