CM: H=1/2^2+1/3^2+....+1/2008^2 <1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2018^2}< \frac{1}{2017.2018}\)
=> H = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}=1-\frac{1}{2018}< 1\)
=> H < 1
Đặt B=\(\frac{2}{4^2}+\frac{2}{6^2}+\frac{2}{8^2}+....+\frac{2}{2008^2}\)
=> A+B= 2\(\left(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2007^2}+\frac{1}{2008^2}\right)\) <2 \(\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+....+\frac{1}{2006\cdot2007}+\frac{1}{2007\cdot2008}\right)\)
=2\(\left(\frac{1}{2}-\frac{1}{2008}\right)\)=\(\frac{2006}{2008}\)
mà A<B=>A+A<A+B=2006/2008
=>A<1003/2008
mấy câu kia cũng tương tự, mình làm biếng quá
A = 1/2² + 1/3³ + ... + 1/2008² < 1
\(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{2008.2008}\)
< \(\frac{1}{1.2}+\:\frac{1}{2.3}+...+\frac{1}{2007.2008}\)
Suy ra A < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)
Suy ra A < 1 - 1/2008
Suy ra A < 2007/2008
Mà 2007/2008 < 1