K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2019

Ta có: \(A=1+3^1+3^2+3^3+...+3^{199}+3^{200}\)

\(\Rightarrow3A=3^1+3^2+3^3+3^4+...+3^{201}\)

\(\Rightarrow3A-A=\left(3^1+3^2+3^3+3^4+...+3^{201}\right)-\left(1+3^1+3^2+3^3+...+3^{200}\right)\)

\(\Rightarrow2A=3^{201}-1\)

\(\Rightarrow A=\frac{3^{201}-1}{2}< 3^{201}-1< 3^{201}=B\)

Vậy A < B

7 tháng 12 2019

Ta có : A = 1 + 3 + 3+ ... + 3200

\(\Leftrightarrow\)2A = 3 + 3+ 33 + ... + 3201

Lấy 2A - A = ( 3 + 32 + 33 + ... + 3201 ) - ( 1 + 3 + 3+ ... + 3200 )

\(\Rightarrow\)A = 3201 - 1

Ta thấy : 3201 - 1 < 3201

\(\Leftrightarrow\)A < B

29 tháng 7 2015

1, A = 291 = 27.13 = (213)7 = 81927

B = 535 = 55.7 = (55)7 = 31257

Vì 3125 < 8192

=> 31257 < 81927

=> B < A

3 tháng 7 2016

2.Ta có:

 A=11+112+113+114+...+11199+11200.

11A=112+113+114+...+11199+11200+11201.

11A-A=11201-11.

10A=11201-11.

A=(11201-11):10

Quan sát 2 vế A và B thì ta thấy rõ ràng vế A<B hay B>A.

Bài 1:

a: Sửa đề: 1/3^200

1/2^300=(1/8)^100

1/3^200=(1/9)^100

mà 1/8>1/9

nên 1/2^300>1/3^200

b: 1/5^199>1/5^200=1/25^100

1/3^300=1/27^100

mà 25^100<27^100

nên 1/5^199>1/3^300

22 tháng 2 2016

Ta có p = [ ( 3 + 32 + 33 + ... + 3201 ) - ( 1 + 3 + 32 + ... + 3200 ) ] : 2

=> p = ( 3201 - 1 ) : 2

Vì ( 3201 - 1 ) : 2 < 3201 nên p < Q

22 tháng 2 2016

Ta có :

\(P=1+3+3^2+3^3+...+3^{200}\)

=> \(3P=3+3^2+3^3+3^4+...+3^{201}\)

=> \(3P-P=\left(3+3^2+3^3+...+3^{201}\right)-\left(1+3+3^2+...+3^{200}\right)\)

=> \(2P=3^{201}-1\)

Ta có :  3201 - 1 < 3201  =>  2P < Q => P < Q

17 tháng 5 2018

a)

Vì \(\frac{2009}{2010}< 1\Rightarrow\frac{2009}{2010}< \frac{2009+1}{2010+1}=\frac{2010}{2011}\)

Cần nhớ:

Nếu: \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\left(n\inℕ^∗\right)\)

Và tương tự:  \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\left(n\inℕ^∗\right)\)

b)Ta có:

 \(\frac{1}{3^{400}}=\frac{1}{\left(3^4\right)^{100}}=\frac{1}{81^{100}}\)

\(\frac{1}{4^{300}}=\frac{1}{\left(4^3\right)^{100}}=\frac{1}{64^{100}}\)

Vì: \(81^{100}>64^{100}\Leftrightarrow\frac{1}{81^{100}}< \frac{1}{64^{100}}\Leftrightarrow\frac{1}{3^{400}}< \frac{1}{4^{300}}\)

c) Ta có:

\(\frac{200+201}{201+202}=\frac{401}{403}< 1\)

\(\frac{200}{201}+\frac{201}{202}=1-\frac{1}{201}+1-\frac{1}{202}=2-\left(\frac{1}{201}+\frac{1}{202}\right)>1\)

=>\(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)

Câu hỏi là gì bn ơi ? 

12 tháng 1 2019

nhanh len gium minh nha

thank you nhieu!!!!!!!!!!!!!!!

10 tháng 1 2016

Đề bài của bạn ​SAI rồi.