K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2020

B = 3 + 32 + 33 + ... + 32009 + 32010

= ( 3 + 32 + 33 ) + ... + ( 32008 + 32009 + 32010 )

= 3( 1 + 3 + 32 ) + ... + 32008( 1 + 3 + 32 )

= 3.13 + ... + 32008.13

= 13( 3 + ... + 32008 ) chia hết cho 13

hay B chia hết cho 13 ( đpcm )

23 tháng 12 2023

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

Ta có: \(M=3^{2012}-3^{2011}+3^{2010}-3^{2009}\)

\(=\left(3^{2012}+3^{2010}\right)-\left(3^{2011}+3^{2009}\right)\)

\(=3^{2010}\cdot\left(3^2+1\right)-3^{2009}\left(3^2+1\right)\)

\(=\left(3^2+1\right)\cdot\left(3^{2010}-3^{2009}\right)\)

\(=10\cdot3^{2009}\cdot\left(3-1\right)⋮10\)(đpcm)

24 tháng 9 2021

a) B\(=\) 3 + 32 + 3+ ... + 360 

\(=\)(3+32)+(33+34)+...+(359+360)

\(=\)3(1+3)+33(1+3)+...+359(1+3)

\(=\)(3+1)(3+33+...+359)

\(=\)4(3+33+...+359)⋮4

⇒B⋮4

b) B\(=\)(3+32+33)+...+(358+359+360)

\(=\)30(3+32+33)+...+357(358+359+360)

\(=\)3+32+33(30+33+36+...+357)

\(=\)39(30+33+36+...+357)⋮13

⇒ B⋮13

28 tháng 12 2021

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

29 tháng 12 2021

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

15 tháng 10 2023

\(3+3^2+...+3^{2022}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{2020}+3^{2021}+3^{2022}\right)\)

\(=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+...+3^{2020}\cdot\left(1+3+9\right)\)

\(=3\cdot13+3^4\cdot13+...+3^{2020}\cdot13\)

\(=13\cdot\left(3+3^4+...+3^{2020}\right)\) ⋮ 13 

Vậy.... 

24 tháng 12 2023

\(A=1+3+3^2+...+3^{101}\)

\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)

\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{99}\right)⋮13\)

25 tháng 12 2021

\(A=3+3^2+3^3+...+3^{99}\\ \Rightarrow A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\\ \Rightarrow A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{97}\left(1+3+3^2\right)\\ \Rightarrow A=\left(1+3+3^2\right)\left(3+3^4+...+3^{97}\right)\\ \Rightarrow A=13\left(3+3^4+...+3^{97}\right)⋮13\)

25 tháng 12 2021

\(A=3+3^2+3^3+...+3^{99}\\ 3A-A=3^{99}-1\\ A=\dfrac{3^{99}-1}{2}\)

3 tháng 10 2021

\(B=3^0+3^1+3^2...+3^{100}\)

\(=3^0\times\left(1+3^1+3^2\right)+3^3\times\left(1+3^1+3^2\right)+...+3^{98}\times\left(1+3^1+3^2\right)\)

\(=3^0\times13+3^3\times13+...+3^{98}\times13\)

\(=13\times\left(3^0+3^3+...+3^{98}\right)⋮13\)

3 tháng 10 2021

B=30+31+32...+3100B=30+31+32...+3100

=30×(1+31+32)+33×(1+31+32)+...+398×(1+31+32)=30×(1+31+32)+33×(1+31+32)+...+398×(1+31+32)

=30×13+33×13+...+398×13=30×13+33×13+...+398×13

=13×(30+33+...+3