K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 12 2020

Đặt \(t=tan\dfrac{x}{2}\Rightarrow\left\{{}\begin{matrix}t\in\left[0;1\right]\\sinx=\dfrac{2t}{1+t^2}\\cosx=\dfrac{1-t^2}{1+t^2}\end{matrix}\right.\)

Pt trở thành: \(\dfrac{m.2t}{1+t^2}+\dfrac{1-t^2}{1+t^2}=1\)

\(\Leftrightarrow2mt+1-t^2=1+t^2\)

\(\Leftrightarrow2mt-2t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=m\end{matrix}\right.\)

\(\Rightarrow\) Để pt có 2 nghiệm thuộc đoạn đã cho thì \(0< m\le1\)

27 tháng 8 2021

1, Phương trình tương đương

\(\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x=1\)

⇔ \(sin\left(2x-\dfrac{\pi}{6}\right)=1\)

⇔ \(2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k.2\pi\)

⇔ x = \(\dfrac{\pi}{3}+k.\pi\)

2, \(2cos3x+3sin3x-2\)

\(\sqrt{13}\)\((\dfrac{2}{\sqrt{13}}cos3x+\dfrac{3}{\sqrt{13}}sin3x)\) - 2

Do \(\left(\dfrac{2}{\sqrt{13}}\right)^2+\left(\dfrac{3}{\sqrt{13}}\right)^2=1\) nên tồn tại 1 góc a sao cho \(\left\{{}\begin{matrix}sina=\dfrac{2}{\sqrt{13}}\\cosa=\dfrac{2}{\sqrt{13}}\end{matrix}\right.\)

BT = \(\sqrt{13}sin\left(x+a\right)-2\)

Do - 1 ≤ sin (x + a) ≤ 1 với mọi x và a

⇒ \(-\sqrt{13}-2\le BT\le\sqrt{13}-2\)

⇒ \(-5,6< BT< 1,6\)

Vậy BT nhận 5 giá trị nguyên trong tập hợp S = {-5 ; -4 ; -3 ; -2 ; -1}

3. \(msinx-cosx=\sqrt{5}\)

⇔ \(\dfrac{m}{\sqrt{m^2+1}}.sinx-\dfrac{1}{\sqrt{m^2+1}}.cosx=\dfrac{\sqrt{5}}{\sqrt{m^2+1}}\)

⇔ sin(x - a) = \(\sqrt{\dfrac{5}{m^2+1}}\) với \(\left\{{}\begin{matrix}sina=\dfrac{1}{\sqrt{m^2+1}}\\cosa=\dfrac{m}{\sqrt{m^2+1}}\end{matrix}\right.\)

Điều kiện có nghiệm : \(\left|\sqrt{\dfrac{5}{m^2+1}}\right|\le1\)

⇔ m2 + 1 ≥ 5 

⇔ m2 - 4 ≥ 0

⇔ \(\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

18 tháng 12 2017

Chọn đáp án D.

21 tháng 3 2017

Đáp án là A

25 tháng 7 2018

Đáp án A

Phương pháp giải:

Biến đổi công thức lượng giác, đưa phương trình bài cho về dạng phương trình cơ bản, kết hợp với điều kiện nghiệm để tìm giá trị của tham số m

Lời giải:

30 tháng 10 2019

Đáp án B

20 tháng 8 2019

Chọn B. 

Đặt MFp5Z9vV2j2E.png

Xét hàm số 324Mo2cilGRB.png

Ta có nLNljOElFJZU.png

Để hàm số Av6VMV9xLPFG.png đồng biến trên zO0ChEZBo4u5.png cần:

Xét hàm số YJ6B34IXgHyc.png

fXqHBnUrzi8t.png

Bảng biến thiên

gl2DpSHJRrH4.png

 

Nhìn vào bảng biến thiên ta thấy với NwNU1phO5JWg.png thì hàm số yNifuPiDXkAQ.png đồng biến trên dB2r8kcE13Gd.png, hàm số dcL7bYb4a66H.png đồng biến trên đoạn E4dbjNXtSb02.png.

24 tháng 8 2017

Đáp án B

Đặt t = sin x ⇒ t ' = c o s x ≥ 0 ; ∀ c ∈ 0 ; π 2  suy ra  0 ≤ t ≤ 1

Khi đó bài toán trở thành :Tìm m để hàm số f t = t 3 + 3 t 2 - m t - 4  đồng biến trên [0;1]

Ta có  f ' t = 3 t 2 + 6 t - m ≥ 0 ⇔ m ≤ 3 t 2 + 6 t ; ∀ t ∈ 0 ; 1 ⇔ m ≤ m i n 0 ; 1 g t = 3 t 2 + 6 t

Xét hàm số trên , suy ra m i n 0 ; 1 g t = g 0 = 0 . Vậy  m ≤ 0

13 tháng 11 2021

\(msinx-mcosx=2\)

Phương trình có nghiệm:

\(\Leftrightarrow m^2+\left(-m\right)^2\ge2^2\)

\(\Leftrightarrow2m^2-4\ge0\Rightarrow\)\(\left[{}\begin{matrix}x\le-\sqrt{2}\\x\ge\sqrt{2}\end{matrix}\right.\)

Phương trình vô nghiệm

\(\Leftrightarrow-\sqrt{2}\le x\le\sqrt{2}\)