K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

TXĐ: D = R

+ y’’ = 6x – 2m.

Giải bài 4 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Giải bài 4 trang 18 sgk Giải tích 12 | Để học tốt Toán 12 là một điểm cực đại của hàm số.

Giải bài 4 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Giải bài 4 trang 18 sgk Giải tích 12 | Để học tốt Toán 12 là một điểm cực tiểu của hàm số.

Vậy hàm số luôn có 1 điểm cực đại và 1 điểm cực tiểu.

22 tháng 12 2016

 y= x3-mx2-2x+1 
y'=3x^2-2mx-2 
PT y'=3x^2-2mx-2=0 có delta'=m^2+6>0 với mọi m 
nên có 2 nghiệm phân biệt. 
vậy hs có 1 cực đại và 1 cực tiểu

1. Chứng minh phương trình x4 + (m2-m)x3  +mx2 - 2mx -2 = 0 luôn có nghiệm thuộc khoảng (0;2) với mọi giá trị của tham số m.2. Cho hàm số y = \(\dfrac{x+1}{x-1}\) có đồ thị (C). Tìm tất cả giá trị của tham số m để đường thẳng (d): y = 2x + m cắt (C) tại hai điểm phân biệt mà hai tiếp tuyến của (C) tại hai điểm đó song song với nhau.3. Chứng minh rằng với mọi giá trị của tham số m thì phương...
Đọc tiếp

1. Chứng minh phương trình x4 + (m2-m)x3  +mx- 2mx -2 = 0 luôn có nghiệm thuộc khoảng (0;2) với mọi giá trị của tham số m.

2. Cho hàm số y = \(\dfrac{x+1}{x-1}\) có đồ thị (C). Tìm tất cả giá trị của tham số m để đường thẳng (d): y = 2x + m cắt (C) tại hai điểm phân biệt mà hai tiếp tuyến của (C) tại hai điểm đó song song với nhau.

3. Chứng minh rằng với mọi giá trị của tham số m thì phương trình \(x^4+mx^3-4x^2-mx+1=0\) luôn có nghiệm trên khoảng (0;1).

4. Cho hàm số: y = \(\dfrac{1}{3}x^3-\left(m+1\right)x^2+\left(2m+4\right)x-3\)  có đồ thị (Cm) (với m là tham số). Tìm m để trên đồ thị (Cm) có hai điểm phân biệt có hoành độ cùng dấu và tiếp tuyến của (Cm) tại mỗi điểm đó vuông góc với đường thẳng d: \(x+3y-6=0\)

5. Cho hàm số y = \(\dfrac{x+1}{x-2}\) có đồ thị (C); đường tròn (T) có tâm I(2;-5) và đi qua điểm E(3;-1). Tìm toạ độ các điểm M thuộc đồ thị (C) để tiếp tuyến của (C) tại M cắt đường tròn (T) tại hai điểm A, B sao cho tam giác EAB vuông tại E.

1
26 tháng 4 2021

Toi mới làm được câu 2 thoi à :( Mấy câu còn lại để rảnh nghĩ thử coi sao

\(PTHDGD:\dfrac{x+1}{x-1}=2x+m\Leftrightarrow x+1=\left(2x+m\right)\left(x-1\right)\)

\(\Leftrightarrow x+1=2x^2-2x+mx-m\Leftrightarrow2x^2+\left(m-3\right)x-m-1=0\)

De ton tai 2 diem phan biet \(\Leftrightarrow\Delta>0\Leftrightarrow\left(m-3\right)^2+8m+8>0\Leftrightarrow m^2+2m+17>0\Leftrightarrow\left(m+1\right)^2+16>0\forall x\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{3-m}{2}\\x_1x_2=\dfrac{-m-1}{2}\end{matrix}\right.\)

Vi 2 tiep tuyen tai 2 diem x1, x2 song song voi nhau

\(\Rightarrow f'\left(x_1\right)=f'\left(x_2\right)\)

\(f'\left(x\right)=\dfrac{x-1-x-1}{\left(x-1\right)^2}=-\dfrac{2}{\left(x-1\right)^2}\)

\(\Rightarrow\dfrac{1}{\left(x_1-1\right)^2}=\dfrac{1}{\left(x_2-1\right)^2}\Leftrightarrow x_1^2-2x_1+1=x_2^2-2x_2+1\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)-2\left(x_1-x_2\right)=0\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=x_2\left(loai\right)\\x_1+x_2=2\end{matrix}\right.\Leftrightarrow\dfrac{3-m}{2}=2\Leftrightarrow m=-1\) 

13 tháng 6 2019

y′ = 3 x 2  − 2(m + 4)x – 4

∆ ′ = m + 4 2  + 12

Vì  ∆ ’ > 0 với mọi m nên y’ = 0 luôn luôn có hai nghiệm phân biệt (và đổi dấu khi qua hai nghiệm đó). Từ đó suy ra đồ thị của (1) luôn luôn có cực trị.

14 tháng 9 2019

Với mọi tham số m ta có :

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

AH
Akai Haruma
Giáo viên
28 tháng 5 2022

Lời giải:
PT hoành độ giao điểm:

$\frac{-4x+12}{x+1}=2x+m$

$\Rightarrow -4x+12=(2x+m)(x+1)$

$\Leftrightarrow 2x^2+x(m+6)+m-12=0(*)$

Ta thấy:

\(2(-1)^2+(-1)(m+6)+m-12=-16\neq 0\)

$\Delta (*)=(m+6)^2-8(m-12)=m^2+4m+132=(m+2)^2+128>0$ với mọi $m$ 

$\Rightarrow (*)$ luôn có 2 nghiệm pb khác -1 với mọi $m$

Tức là $(d)$ cắt $(C)$ tại 2 điểm phân biệt với mọi $m$ (đpcm)

28 tháng 5 2022

2 ( − 1 ) 2 + ( − 1 ) ( m + 6 ) + m − 12 = − 16 ≠ 0

dòng này là sao vậy ạ?

21 tháng 11 2018

a) y = x 3  − (m + 4) x 2  − 4x + m

⇔ ( x 2  − 1)m + y − x 3  + 4 x 2  + 4x = 0

Đồ thị của hàm số (1) luôn luôn đi qua điểm A(x; y) với mọi m khi (x; y) là nghiệm của hệ phương trình:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải hệ, ta được hai nghiệm:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy đồ thị của hàm số luôn luôn đi qua hai điểm (1; -7) và (-1; -1).

b) y′ = 3 x 2  − 2(m + 4)x – 4

Δ′ = ( m + 4 ) 2  + 12

Vì Δ’ > 0 với mọi m nên y’ = 0 luôn luôn có hai nghiệm phân biệt (và đổi dấu khi qua hai nghiệm đó). Từ đó suy ra đồ thị của (1) luôn luôn có cực trị.

c) Học sinh tự giải.

d) Với m = 0 ta có: y = x 3  – 4 x 2  – 4x.

Đường thẳng y = kx sẽ cắt (C) tại ba điểm phân biệt nếu phương trình sau có ba nghiệm phân biệt:  x 3  – 4 x 2  – 4x = kx.

Hay phương trình  x 2  – 4x – (4 + k) = 0 có hai nghiệm phân biệt khác 0, tức là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

1 tháng 4 2016

y’ = 3x2 – 2mx – 2 , ∆’ = m + 6 > 0 nên y’ = 0 có hai nghiệm phân biệt và y’ đổi dấu khi qua các nghiệm đó.

Vậy hàm số luôn có một cực đại và một cực tiểu.

31 tháng 3 2017

y’ = 3x2 – 2mx – 2 , ∆’ = m2 + 6 > 0 nên y’ = 0 có hai nghiệm phân biệt và y’ đổi dấu khi qua các nghiệm đó.

Vậy hàm số luôn có một cực đại và một cực tiểu.

6 tháng 11 2022

saiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii hoan toan luon

1 tháng 6 2019

Chọn B.

Tập xác định: D =  ℝ

y =  x 3 + 3 m x 2 - 2 x + 1  

Hàm số có điểm cực đại tại  x = -1 => y'(1) = 0 

Với  => Hàm số đạt cực đại tại x = -1.