tính biểu thức
1/2 + 1/6 + 1/12 + 1/20 + 1/30 giúp tớ với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}=1-\dfrac{1}{6}=\dfrac{5}{6}\)
ta có:
A= 1/6+1/12+1/20+1/30+1/42+1/56
= 1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
= 1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
= 1/2-1/8
= 3/8
vậy A= 3/8
`A=1/2+1/6+1/12+1/20+1/30+...+1/9900`
`=1/(1xx2)+1/(2xx3)+1/(3xx4)+1/(4xx5)+1/(5xx6)+...+1/(99xx100)`
`=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...+1/99-1/100`
`=1/1-1/100`
`=100/100-1/100`
`=99/100`
A=1/2+1/6+1/12+1/20+1/30+...+1/9900
=1/(1��2)+1/(2��3)+1/(3��4)+1/(4��5)+1/(5��6)+...+1/(99��100)=1/(1xx2)+1/(2xx3)+1/(3xx4)+1/(4xx5)+1/(5xx6)+...+1/(99xx100)
=1/1−1/2+1/2−1/3+1/3−1/4+1/4−1/5+1/5−1/6+...+1/99−1/100=1/1−1/2+1/2−1/3+1/3−1/4+1/4−1/5+1/5−1/6+...+1/99−1/100
=1/1−1/100=1/1−1/100
=100/100−1/100=100/100−1/100
=99/100=99/100
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
=\(1-\frac{1}{10}=\frac{9}{10}\)
k cho mk nha
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(1-\frac{1}{10}\)
\(\frac{9}{10}\)
ta có:
1/2+1/6+...+1/9900
=1/1.2+1/2.3...+1/99.100
=1-1/2+1/2-1/3+1/3-...+1/99-1/100
=1-1/100
=99/100
\(A=\frac{1}{2}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{9900}\)
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+\cdot\cdot\cdot+\frac{1}{99\times100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-......+\frac{1}{10}-\frac{1}{11}.\)
=\(\frac{1}{2}-\frac{1}{11}\)
=\(\frac{9}{22}.\)
\(A=\dfrac{2}{1x3}+\dfrac{2}{3x5}+\dfrac{2}{5x7}+...+\dfrac{2}{21x23}\)
\(A=2x\left(\dfrac{1}{1x3}+\dfrac{1}{3x5}+\dfrac{1}{5x7}+...+\dfrac{1}{21x23}\right)\)
\(A=2x\dfrac{1}{2}x\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{21}-\dfrac{1}{23}\right)\)
\(A=1-\dfrac{1}{23}\)
\(A=\dfrac{22}{23}\)
\(B=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)
\(B=\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+\dfrac{1}{5x6}+\dfrac{1}{6x7}+\dfrac{1}{7x8}+\dfrac{1}{8x9}+\dfrac{1}{9x10}\)
\(B=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(B=\dfrac{1}{2}-\dfrac{1}{10}\)
\(B=\dfrac{5}{10}-\dfrac{1}{10}\)
\(B=\dfrac{4}{10}\)
\(B=\dfrac{2}{5}\)