Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) Ta có: góc BAD+góc CAE+góc BAC=180 độ
Mà góc BAC=90 độ nên góc BAD+ góc CAE=90 độ (1)
Vì tam giác ACE vuông tại E nên góc ACE+góc CAE=90 độ(2)
Từ (1) và (2) => góc BAD= góc ACE
Xét tam giác ABD và tam giác ACE có:
góc ADB=góc AED=90 độ
AB=AC ( vì tam giác ABC vuông cân tại A)
góc BAD=góc ACE (cmt)
=> tam giác ABD=tam giác ACE (cạnh huyền-góc nhọn)
b) Theo câu a) Tam giác ABD=tam giác ACE
=> DA=EC và BD=AE
Mà DE=DA+AE nên DE=EC+BD
Bạn tham khảo tạm.
Gọi M là trung điểm BC. Trên tia đối tia MA lấy điểm F sao cho M là trung điểm AF. AM cắt EF tại K
Dễ dàng ∆ABM = ∆FCM (c.g.c)
=> ^ABM = ^FCM (2 góc t.ứ)và AB = FC
Mà 2 góc này ở vị trí slt.
=> AB // FC.
=>^BAC + ^ACF = 180° (tcp).
Lại có:
^EAC = ^DAB = 90°
=> ^EAC + ^DAB = 180°
=> ^EAB + ^BAC + ^BAC + CAD = 180°
=> ^BAC + ^EAD = 180°
Do đó ^EAD = ^ACF.
Xét ∆ACF và ∆EAD có:
AC = AE (GT)
^ACF = ^EAD
^CF = AD (=AB)
=>∆ACF = ∆EAD (c.g.c)
=> ^CAK = ^AED (2 góc t/ứ)
=> ^CAM+ ^EAM = ^AED + ^EAM
=> ^AED + ^EAM = ^CAE=90°
=> ^AKE = 90°
=> AM vuông góc vs DE
Mà AH vuông góc DE.
=> Đpcm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
Suy ra: AB=DC(Hai cạnh tương ứng)
mà AB=6cm(gt)
nên DC=6cm
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
hay \(AM=\dfrac{10}{2}=5\left(cm\right)\)
Vậy: BC=10cm; DC=6cm; AM=5cm
các bạn giải nhanh giúp mik nha
2h mik đi học r
a) Ta có: \(\widehat{CAK}+\widehat{CAB}+\widehat{BAH}=180^0\)
\(\Leftrightarrow\widehat{CAK}+\widehat{BAH}=90^0\)(1)
Ta có: ΔAKC vuông tại K(CK⊥KA)
nên \(\widehat{CAK}+\widehat{ACK}=90^0\)(hai góc nhọn phụ nhau)(2)
Từ (1) và (2) suy ra \(\widehat{BAH}=\widehat{ACK}\)(đpcm)
b)
Xét ΔAKC vuông tại K và ΔBHA vuông tại H có
AC=AB(ΔABC vuông cân tại A)
\(\widehat{BAH}=\widehat{ACK}\)(cmt)
Do đó: ΔAKC=ΔBHA(cạnh huyền-góc nhọn)
⇒AK=BH(hai cạnh tương ứng)
c) Sửa đề: Chứng minh HK=BH+CK
Ta có: ΔAKC=ΔBHA(cmt)
nên KC=HA(hai cạnh tương ứng)
Ta có: AK+AH=KH(A nằm giữa K và H)
mà AK=BH(cmt)
và AH=CK(cmt)
nên KH=BH+CK(đpcm)