K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2022

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22 tháng 10 2017

sao khong la lop 6

13 tháng 6 2016

Ta biến đổi 1 tí nhé

\(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\ge4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)

\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)

Tới đây dễ dàng áp dụng BĐT \(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)

\(\Leftrightarrow\frac{3}{a+b}\le\frac{3}{4}.\frac{1}{a}+\frac{3}{4}.\frac{1}{b}\left(1\right)\)

\(\Leftrightarrow\frac{2}{b+c}\le\frac{1}{2}.\frac{1}{b}+\frac{1}{2}.\frac{1}{c}\left(2\right)\)

\(\Leftrightarrow\frac{1}{a+c}\le\frac{1}{4}.\frac{1}{a}+\frac{1}{4}.\frac{1}{c}\left(3\right)\)

Cộng vế với vế của (1), (2), (3) suy ra 

\(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{3}{4}\cdot\frac{1}{a}+\frac{3}{4}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{c}+\frac{1}{4}\cdot\frac{1}{a}+\frac{1}{4}\cdot\frac{1}{c}\)

\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{a}+\frac{5}{4}\cdot\frac{1}{b}+\frac{3}{4}\cdot\frac{1}{b}\)

\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)

\(\Leftrightarrow Dpcm\)

11 tháng 6 2016

Ta có: 3A = 3^2 + 3^3 + 3^4 + 3^5 +...+ 3^101

            A = 3 + 3^2 + 3^3 + 3^4 +...+ 3^100

=>  3A - A = 3^101 - 3

=>  2A = 3^101 - 3

=>  A = \(\frac{3^{101}-3}{2}\)

=>  A = \(\frac{3^{101}-1}{2}-\frac{2}{2}=\left(3^{101}-1\right).\frac{1}{2}-1\)

=>  A < B

19 tháng 10 2017

ọi k là một số nguyên, theo đề ta có: 
a=3k+1 
b=3k+2 
ab=(3k+1)(3k+2)=9k^2+9k+2 
vì 9k^2 và 9k chia hết cho 3 
nên ab chia 3 dư 2

19 tháng 10 2017

- Vì a chia cho 3 dư 1 nên a = 3m + 1 ( m \(\in\)N )

- Vì b chia cho 3 dư 2 nên b = 3n + 2 ( n\(\in\)N )

Ta có :

a . b = ( 3m + 1 ) ( 3n + 2 )

        = 3m . 3n + 3m . 2 + 1 . 3n + 1 . 2

        = ( 9 mn + 6m + 3n ) + 2

        = 3 ( 3mn + 2m + n ) + 2 ....

Vậy ab chia cho 3 dư 2 .

24 tháng 11 2022

Câu 1: 

=>n(n+1)=1275

=>n^2+n-1275=0

=>\(n\in\varnothing\)

Câu 2:

a: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯC(2n+1;3n+1)={1;-1}

b: Gọi d=ƯCLN(7n+10;5n+7)

=>35n+50-35n-49 chia hết cho d

=>1 chia hết cho d

=>d=1

=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau