K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2020

ĐK: \(x\ge\dfrac{1}{2}\)

\(pt\Leftrightarrow\sqrt{x}-1+\sqrt{2x-1}-1+x^2+x-2=0\)

\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}+1}+\dfrac{2x-2}{\sqrt{2x-1}+1}+\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\sqrt{2x-1}+1}+x+2\right)\left(x-1\right)=0\)

Vì \(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\sqrt{2x-1}+1}+x+2>0\) nên \(x-1=0\Leftrightarrow x=1\left(tm\right)\)

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

NV
28 tháng 2 2021

\(\Leftrightarrow2x^2+2+2\sqrt{\left(x^2+x+1\right)\left(x^2-x+1\right)}=2x^2+4\)

\(\Leftrightarrow\sqrt{x^4+x^2+1}=1\)

\(\Leftrightarrow x^4+x^2=0\)

\(\Leftrightarrow x=0\)

28 tháng 2 2021

`\sqrt{x^2+x+1}+\sqrt{x^2-x+1}=\sqrt{2x^2+4}`

`<=>2x^2+2+2\sqrt{x^4+x^2+1}=2x^2+3`

`<=>\sqrt{x^4+x^2+1}=1`

`<=>x^4+x^2=0`

`<=>x=0`

NV
22 tháng 2 2021

1.

ĐKXĐ: \(x\ge\dfrac{3+\sqrt{41}}{4}\)

\(\Leftrightarrow x^2+x-1+2\sqrt{x\left(x^2-1\right)}=2x^2-3x-4\)

\(\Leftrightarrow x^2-4x-3-2\sqrt{\left(x^2-x\right)\left(x+1\right)}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x}=a>0\\\sqrt{x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow a^2-3b^2-2ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-3b\right)=0\)

\(\Leftrightarrow a=3b\)

\(\Leftrightarrow\sqrt{x^2-x}=3\sqrt{x+1}\)

\(\Leftrightarrow x^2-x=9\left(x+1\right)\)

\(\Leftrightarrow...\) (bạn tự hoàn thành nhé)

NV
22 tháng 2 2021

2.

ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{x+1}=a\ge0\) pt trở thành:

\(x^3+3\left(x^2-4a^2\right)a=0\)

\(\Leftrightarrow x^3+3ax^2-4a^3=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+2a\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=x\left(x\ge0\right)\\2\sqrt{x+1}=-x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=x+1\\x^2=4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-4x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=2-2\sqrt{2}\end{matrix}\right.\)

15 tháng 7 2023

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)

16 tháng 9 2021

a) \(3x-2\sqrt{x-1}=4\) (ĐK: x ≥ 1)

\(\Rightarrow3x-2\sqrt{x-1}-4=0\)

\(\Rightarrow3x-6-2\sqrt{x-1}+2=0\)

\(\Rightarrow3\left(x-2\right)-2\left(\sqrt{x-1}-1\right)=0\)

\(\Rightarrow3\left(x-2\right)-2.\dfrac{x-2}{\sqrt{x-1}+1}=0\)

\(\Rightarrow\left(x-2\right)\left[3-\dfrac{2}{\sqrt{x-1}+1}\right]=0\)

*TH1: x = 2 (t/m)

*TH2: \(3-\dfrac{2}{\sqrt{x-1}+1}=0\)

\(\Rightarrow3=\dfrac{2}{\sqrt{x-1}+1}\)

\(\Rightarrow3\sqrt{x-1}+3=2\)

\(\Rightarrow3\sqrt{x-1}=-1\) (vô lí)

Vậy S = {2}

b) \(\sqrt{4x+1}-\sqrt{x+2}=\sqrt{3-x}\) (ĐK: \(-\dfrac{1}{4}\le x\le3\) )

\(\Rightarrow\sqrt{4x+1}-3-\sqrt{x+2}+2-\sqrt{3-x}+1=0\)

\(\Rightarrow\dfrac{4x-8}{\sqrt{4x+1}+3}-\dfrac{x-2}{\sqrt{x+2}+2}+\dfrac{x-2}{\sqrt{3-x}+1}=0\)

\(\Rightarrow\left(x-2\right)\left(\dfrac{4}{\sqrt{4x+1}+3}-\dfrac{1}{\sqrt{x+2}+2}+\dfrac{1}{\sqrt{3-x}+1}\right)=0\)

=> x = 2

 

 

 

16 tháng 9 2021

\(a,3x-2\sqrt{x-1}=4\left(x\ge1\right)\\ \Leftrightarrow-2\sqrt{x-1}=4-3x\\ \Leftrightarrow4\left(x-1\right)=16-24x+9x^2\\ \Leftrightarrow9x^2-28x+20=0\\ \Leftrightarrow\left(x-2\right)\left(9x-10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=\dfrac{10}{9}\left(tm\right)\end{matrix}\right.\)

\(b,\sqrt{4x+1}-\sqrt{x+2}=\sqrt{3-x}\left(-\dfrac{1}{4}\le x\le3\right)\\ \Leftrightarrow4x+1+x+2-2\sqrt{\left(4x+1\right)\left(x+2\right)}=3-x\\ \Leftrightarrow-2\sqrt{\left(4x+1\right)\left(x+2\right)}=2-6x\\ \Leftrightarrow\sqrt{4x^2+9x+2}=3x-1\\ \Leftrightarrow4x^2+9x+2=9x^2-6x+1\\ \Leftrightarrow5x^2-15x-1=0\\ \Leftrightarrow\Delta=225+20=245\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15-\sqrt{245}}{10}=\dfrac{15-7\sqrt{5}}{10}\left(ktm\right)\\x=\dfrac{15+\sqrt{245}}{10}=\dfrac{15+7\sqrt{5}}{10}\left(tm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{15+7\sqrt{5}}{10}\)

23 tháng 10 2021

\(1,PT\Leftrightarrow2x-1=5\Leftrightarrow x=3\\ 2,\Leftrightarrow x-5=9\Leftrightarrow x=14\\ 3,ĐK:x\ge1\\ PT\Leftrightarrow3\sqrt{x-1}=21\Leftrightarrow\sqrt{x-1}=7\Leftrightarrow x=50\left(tm\right)\\ 4,\Leftrightarrow x=\dfrac{\sqrt{50}}{\sqrt{2}}=\dfrac{5\sqrt{2}}{\sqrt{2}}=5\)

AH
Akai Haruma
Giáo viên
8 tháng 6 2021

Lời giải:

PT vô nghiệm vì: 

ĐKXĐ: \(\left\{\begin{matrix} x-1\geq 0\\ -2x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 0\end{matrix}\right.\) (điều này không thể xảy ra)

 

8 tháng 6 2021

Cảm ơn nhiều ạ!