Cho n!=1.2.3.4.....n. Chứng minh \(\frac{5}{3}<\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{2016!}<2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi đề n(n+5)-n(n+3)(n-2) mới đúng còn đề cua bạn hình như bị sai
ồ thế chắc là giáo viên mình sai đề rồi. thôi làm giúp mình đề bạn cho là đúng đi <3
Đặt A là biểu thức của đề bài.
Ta có: 3/ 1.2.3.4 = 1/ 1.2.3 -1/ 2.3.4
3/ 2.3.4.5 = 1/ 2.3.4 -1/ 3.4.5
3/ n(n+1)(n+2)(n+3) = 1/ n(n+1)(n+2) -1/ (n+1)(n+2)(n+3)
Do đó: 3A = 1/ 1.2.3 -1/ 2.3.4 + 1/ 2.3.4 - 1/ 3.4.5 +...+ 1/ n(n+1)(n+2) - 1/ (n+1)(n+2)(n+3)
3A = 1/ 1.2.3 - 1/ (n+1)(n+2)(n+3)
3A = 1/6 - 1/ (n+1)(n+2)(n+3)
A = 1/18 - 1/ 3(n+1)(n+2)(n+3)
Đó là kết quả rút gọn. Chúc bạn học tốt.
Đặt \(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{n.\left(n+1\right).\left(n+2\right).\left(n+3\right)}\)
\(\Rightarrow3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+\frac{3}{3.4.5.6}+...+\frac{3}{n.\left(n+1\right).\left(n+2\right).\left(n+3\right)}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{n.\left(n+1\right).\left(n+2\right)}-\frac{1}{\left(n+1\right).\left(n+2\right).\left(n+3\right)}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
\(A=\frac{\frac{1}{1.2.3}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}}{3}\)
B tự làm nốt nhé
Bài này áp dụng công thức:
\(\frac{a}{b.c.d.e}=\frac{1}{b.c.d}-\frac{1}{c.d.e}\)( đk: \(e-b=a\))
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
\(3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
\(3A=\frac{1}{6}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
\(3A=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)-6}{6\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
=>\(A=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)-6}{18\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{n^3+3n^2+3n^2+9n+6-6}{18\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{n^3+6n^2+9n}{18\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)