Cho 3x-4y = 0. Tìm giá trị nhỏ nhát của biểu thức A= x^2+y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$3x-4y=0\Rightarrow 3x=4y\Rightarrow \frac{x}{4}=\frac{y}{3}$
Đặt $\frac{x}{4}=\frac{y}{3}=a$
$\Rightarrow x=4a; y=3a$
$\Rightarrow x^2+y^2=(4a)^2+(3a)^2=25a^2\geq 0$ với mọi $a\in\mathbb{R}$
$\Rightarrow x^2+y^2$ nhận giá trị nhỏ nhất bằng $0$
Giá trị này đạt tại $a=0\Leftrightarrow x=y=0$
Bạn chịu khó vào link này nhé : https://h.vn/hoi-dap/question/49863.html
Bài: Cho x,y >0, x+y>=4. Tìm giá trị nhỏ nhất của biểu thức: A= 3x + 4y +\(\frac{5}{x}+\frac{9}{y}\)
\(A=3x+4y+\frac{5}{x}+\frac{9}{y}=\frac{5}{4}x+\frac{5}{x}+\frac{9}{4}y+\frac{9}{y}+\frac{7}{4}x+\frac{7}{4}y\)
\(\ge2\sqrt{\frac{5}{4}x.\frac{5}{x}}+2\sqrt{\frac{9}{4}y.\frac{9}{y}}+\frac{7}{4}.4\)
\(=5+9+7=21\)
Dấu \(=\)khi \(x=y=2\).
x^2+y^2>=0
=>25*(x^2+y^2)>=0(1)
mà:(12-3x-4y)^2>=0(2)
cộng (1) cho (2)=>25(x^2+y^2) + (12-3x-4y)^2>=0
=>min=0 khi x=y=0
Bài 1 :
a)x.(x+3)=0
=> x=0 hoặc x+3=0
ta có: x+3=0
x = -3
Vậy x=0 hoặc x=-3
b) (x-2). (5-x) = 0
=> x-2=0 hoặc 5-x =0
TH1
x-2=0
x =2
TH2
5-x =0
x =5
Vậy x=5 hoặc x=2
Bài 2
a) Để A có GTNN thì | x: 9| + |y-5| < 0
=> A=1890 +|x:9|+ | y-5| < 1890
Dấu = chỉ xảy ra khi | x: 9|+|y-5|=0
\(\left|x-2\right|\ge0;y+5\ge0\Rightarrow\left|x-2\right|+\left|y+5\right|\ge0\)
\(\Rightarrow\left|x-2\right|+\left|y+5\right|-15\ge-15\)
Dấu "=" xảy ra tại x=2;y=-5
Ta có: A= \(\left|x-2\right|+\left|y+5\right|-15\)
\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|y+5\right|\ge0\end{cases}\Rightarrow\left|x-2\right|+\left|y+5\right|-15\ge-15}\)
Để A nhỏ nhất thì Min (A) = -15 <=> x=2; y= -5
(Min là giá trị nhỏ nhất)
Có: \(3x-4y=0 \Leftrightarrow y=\dfrac{3x}{4}\)
Thay vào biểu thức A được:
\(A=x^2+\Bigg(\dfrac{3x}{4}\Bigg)^2 \)
Vì \(x^2 ≥0 ; \Bigg(\dfrac{3x}{4}\Bigg)^2 ≥0\)
\(\Rightarrow A_{min} \Leftrightarrow x=0 \Rightarrow y=0\)
Vậy \(\Rightarrow A_{min} \Leftrightarrow x=y=0\).
cam on nha ban