Cho tam giác ABC, BC=10. Gọi I là đường tròn tâm I thuộc BC và tiếp xúc vs cạnh AB, AC. Biết AI=3, 2IB=3IC
Tính độ dài các cạnh tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\angle BQI+\angle BPI=90+90=180\Rightarrow BPIQ\) nội tiếp
Ta có: \(\angle BPI+\angle BAI=90+90=180\Rightarrow BPIA\) nội tiếp
\(\Rightarrow B,P,I,Q,A\) cùng thuộc 1 đường tròn
b) Ta có: \(\angle KAF=\angle PAC=\angle PQI=\angle IPQ\) (\(\Delta IPQ\) cân tại I) \(=\angle KAQ\)
\(\Rightarrow AK\) là phân giác \(\angle QAF\Rightarrow\dfrac{AF}{AQ}=\dfrac{KF}{KQ}\)
Vì AK là phân giác trong \(\angle QAF\) mà \(AK\bot AB\)
\(\Rightarrow AB\) là phân giác ngoài \(\angle QAF\)
\(\Rightarrow\dfrac{BF}{BQ}=\dfrac{AF}{AQ}=\dfrac{KF}{KQ}\Rightarrow BF.KQ=KF.BQ\)
c)
K ẻ B N ⊥ A C N ∈ A C . B A C ⏜ = 60 0 ⇒ A B N ⏜ = 30 0 ⇒ A N = A B 2 = c 2 ⇒ B N 2 = A B 2 − A N 2 = 3 c 2 4 ⇒ B C 2 = B N 2 + C N 2 = 3 c 2 4 + b − c 2 2 = b 2 + c 2 − b c ⇒ B C = b 2 + c 2 − b c
Gọi O là tâm đường tròn ngoại tiếp tam giác ABC, R là bán kính đường tròn ngoại tiếp tam giác ABC. Xét tam giác đều BCE có R = O E = 2 3 E M = 2 B C 3 3.2 = 1 3 . 3 b 2 + c 2 − b c