K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

CÂU LẠC BỘ TOÁN HỌC CHỦ NHIỆM: PHAN NGỌC THANH TRÂM ĐỀ BÀI: I. PHẦN LÝ THUYẾT: 1. Số hữu tỉ Số hữu tỉ là số có thể viết dưới dạng \(\dfrac{a}{b}\) với \(a, b \in \mathbb Z, b \ne 0\) và được kí hiệu là \(\mathbb Q\) 2. Biểu diễn số hữu tỉ trên trục số Mỗi số hữu tỉ được biểu diễn bởi một điểm trên trục số và không phụ thuộc vào cách chọn phân số xác định nó. 3. So sánh số hữu...
Đọc tiếp

CÂU LẠC BỘ TOÁN HỌC

CHỦ NHIỆM: PHAN NGỌC THANH TRÂM

ĐỀ BÀI:

I. PHẦN LÝ THUYẾT:

1. Số hữu tỉ

Số hữu tỉ là số có thể viết dưới dạng \(\dfrac{a}{b}\) với \(a, b \in \mathbb Z, b \ne 0\) và được kí hiệu là \(\mathbb Q\)

2. Biểu diễn số hữu tỉ trên trục số

Mỗi số hữu tỉ được biểu diễn bởi một điểm trên trục số và không phụ thuộc vào cách chọn phân số xác định nó.

3. So sánh số hữu tỉ

Để so sánh hai số hữu tỉ \(x,y\) ta làm như sau:

- Viết \(x,y\) dưới dạng phân số cùng mẫu dương.

\(x = \dfrac{a}{m} ; y = \dfrac{b}{m} ( m>0)\)

- So sánh các tử là số nguyên \(a\) và \(b\)

Nếu \(a> b\) thì \(x > y\)

Nếu \(a = b\) thì \(x=y\)

Nếu \(a < b\) thì \(x < y\).

4. Chú ý

- Số hữu tỉ lớn hơn \(0\) gọi là số hữu tỉ dương

- Số hữu tỉ nhỏ hơn \(0\) gọi là số hữu tỉ âm

- Số \(0\) không là số hữu tỉ dương, cũng không là số hữu tỉ âm

II. PHẦN BÀI TẬP:

A. Trắc nghiệm:

Câu 1: Định nghĩa số hữu tỉ?

A. Số hữu tỉ là số có thể viết dưới dạng \(\dfrac{a}{b}\) với \(a, b \in \mathbb Z, b \ne 0\) và được kí hiệu là \(\mathbb Q\)

B. Số hữu tỉ là số có thể viết dưới dạng \(\dfrac{a}{b}\) với \(a, b \in \mathbb Z, b = 0\) và được kí hiệu là \(\mathbb Q\)

C. Số hữu tỉ là số có thể viết dưới dạng \(\dfrac{a}{b}\) với \(a, b \in \mathbb N, b \ne 0\) và được kí hiệu là \(\mathbb Q\)

D. Số hữu tỉ là số có thể viết dưới dạng \(\dfrac{a}{b}\) với \(a, b \in \mathbb R, b \ne 0\) và được kí hiệu là \(\mathbb Q\)

Câu 2: Trong các phân số sau, những phân số nào biểu diễn số hữu tỉ \(\dfrac{3}{-4}\)

A.\(- \dfrac{12}{15}\)

B. \(- \dfrac{20}{8}\)

C. \(-\dfrac{18}{12}\)

D. \(-\dfrac{15}{20}\)

Câu 3: Tập hợp số hữu tỉ được kí hiệu là:

A. \(\mathbb Q\)

B. \(\mathbb N\)

C. \(\mathbb R\)

D. \(\mathbb Z\)

Câu 4: Khẳng định nào sau đây là đúng:

A. Số \(0\) không là số hữu tỉ dương

B Số \(0\) không là số hữu tỉ âm

C. Số \(0\) không là số hữu tỉ dương, cũng không là số hữu tỉ âm

D. Số \(0\) là số hữu tỉ

Câu 5: Cách viết nào sau đây là đúng:

A. \(\dfrac{3}{2} \in \mathbb Q\)

B. \(\dfrac{2}{3} \in \mathbb Z\)

C. \(-\dfrac{9}{2} \notin \mathbb Q\)

D. \(-6 \in \mathbb N\)

Câu 6: Số nào sau đây là số hữu tỉ dương:

A.\(\dfrac{-2}{-3}\)

B. \(\dfrac{-2}{5}\)

C. \(\dfrac{-5}{15}\)

D. \(\dfrac{-2}{15}\)

II.TỰ LUẬN:

Câu 1: So sánh các số hữu tỉ:

a) \(x = \dfrac{2}{-7}\) và \(y = \dfrac{-3}{11}.\)

b) \(x = \dfrac{-213}{300}\) và \(y = \dfrac{18}{-25}.\)

c) \(x = -0,75\) và \(y = \dfrac{-3}{4}.\)

Câu 2:

a) Biểu diễn các số hữu tỉ sau trên trục số: \(\dfrac{2}{5};\dfrac{{- 4}}{5};\dfrac{7}{5}\)

b) Hãy sắp xếp các số hữu tỉ sau theo thứ tự tăng dần: \(\dfrac{9}{{11}};\dfrac{{ - 30}}{{ - 40}};0;\dfrac{{ - 14}}{{18}};\dfrac{{ - 12}}{{ - 8}}\)

Câu 3: Cho số hữu tỉ \(x=\dfrac{a - 4}{5}\), với giá trị nào của a thì:

a) x là số dương?

b) x là số âm?

c) x không là số dương cũng không là số âm?

Câu 4: Cho số hữu tỉ \(x=\dfrac{a + 17}{a}\) ( \(a ≠ 0\) ). Với giá trị nguyên nào của a thì x là số nguyên?

Sưu tầm và biên soạn: PCN: Nguyễn Thành Trương




2
5 tháng 8 2019

Má ơi con đăng rồi

5 tháng 8 2019

:v

28 tháng 6 2021

`a/b<(a+c)/(b+d)`

`<=>a(b+d)<b(a+c)`

`<=>ab+ad<ad<bc`

`<=>ad<bc`

`<=>a/b<c/d`(theo giả thiết)

`(a+c)/(b+d)<c/d`

`<=>d(a+c)<c(b+d)`

`<=>ad+cd<bc+dc`

`<=>ad<bc`

`<=>a/b<c/d`(theo giả thiết)`

`=>a/b<(a+c)/(b+d)<c/d`

15 tháng 2 2021

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

15 tháng 2 2021

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

17 tháng 8 2023

a) 3/8 = 1/8 + 2/8 = 1/8 + 1/4

3/8 = 5/8 - 2/8 = 5/8 - 1/4

b) 5/12 = 1/12 + 4/12 = 1/12 + 1/3

5/12 = 7/12 - 2/12 = 7/12 - 1/6

c) 1/11 = -2/11 + 3/11

1/11 = 2/11 - 1/11

d) 1/4 = -2/4 + 3/4 = -1/2 + 3/4

1/4 = 5/4 - 4/4 = 5/4 -1

2 tháng 6 2019

P = ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d )

Xét 4 số a,b,c,d khi chia cho 3, tồn tại 2 số có cùng số dư khi chia cho 3, hiệu của chúng chia hết cho 3 nên P chia hết cho 3

Xét 4 số a,b,c,d khi chia cho 4

- nếu tồn tại 2 số cùng số dư khi chia cho 4 thì hiệu của chúng chia hết cho 4, do đó P chia hết cho 4

- nếu 4 số ấy có số dư khác nhau khi chia cho 4 ( là 0,1,2,3 ) thì 2 số có dư là 0 và 2 có hiệu chia hết cho 2, 2 số có số dư là 1 và 3

có hiệu chia hết cho 2. do đó P chia hết cho 4

2 tháng 6 2019

#)Giải : 

Trong 4 số a,b,c,d có ít nhất 2 số có cùng số dư khi chia cho 3

Trong 4 số a,b,c,d : Nếu có 2 số có cùng số dư khi chia cho 4 thì hiệu hai số đó sẽ chia hết cho 4 

Nếu không thì 4 số dư theo thứ tự 0,1,2,3 <=> trong 4 số a,b,c,d có hai số chẵn, hai số lẻ 

Hiệu của hai số chẵn và hai số lẻ trong 4 số đó chia hết cho 2 

=> Tích trên chia hết cho 3 và 4 

Mà ƯCLN ( 3; 4 ) = 1 nên ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho ( 3 . 4 ) = 12 

                           #~Will~be~Pens~#

31 tháng 3 2017

2.

a). = = .

b) = = = b.

c) : = : = a.

d) : = : =



GV
26 tháng 4 2017

Câu a, b thì Nguyễn Quang Duy làm đúng rồi.

c) \(a^{\dfrac{4}{3}}:\sqrt[3]{a}=a^{\dfrac{4}{3}}:a^{\dfrac{1}{3}}=a^{\dfrac{4}{3}-\dfrac{1}{3}}=a\)

d) \(\sqrt[3]{b}:b^{\dfrac{1}{6}}=b^{\dfrac{1}{3}}:b^{\dfrac{1}{6}}=b^{\dfrac{1}{3}-\dfrac{1}{6}}=b^{\dfrac{1}{6}}\)