K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2021

\(\left(x-y\right)^3-x^3+y^3=\left(x-y\right)^3-\left(x^3-y^3\right)=\left(x-y\right)^3-\left(x-y\right)\left(x^2+xy+y^2\right)=\left(x-y\right)\left(x^2-2xy+y^2-x^2-xy-y^2\right)=-3xy\left(x-y\right)\)

25 tháng 8 2021

\(\left(x-y\right)^3-x^3+y^3\\ =\left(x-y\right)^3-\left(x^3-y^3\right)\\ =\left(x-y\right)^3-\left(x-y\right)\left(x^2+xy+y^2\right)\\ =\left(x-y\right)\left[\left(x-y\right)^2-\left(x^2+xy+y^2\right)\right]\\ =\left(x-y\right)\left(x^2-2xy+y^2-x^2-xy-y^2\right)\\ =\left(-3xy\right)\left(x-y\right)\)

5 tháng 11 2019

a, 12x2y - 6xy = 6xy . (2x - 1)

b, x3 - 2x2 + x = x. (x2 - 2x + 1) = x . (x - 1)2

8 tháng 8 2023

Câu 1:

\(4x^2+16x-9\)

\(=4x^2+18x-2x-9\)

\(=2x\left(2x+9\right)-\left(2x+9\right)\)

\(=\left(2x-1\right)\left(2x+9\right)\)

Câu 2:

\(6x^2-11x+3=0\)

\(\Leftrightarrow6x^2-2x-9x+3=0\)

\(\Leftrightarrow2x\left(3x-1\right)-3\left(3x-1\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=3\\3x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

6 tháng 10 2019

\(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)

\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)

\(+\left(x^7-x^5+x^4-x^2+x\right)\)

\(+\left(x^6-x^4+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

6 tháng 10 2019

\(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

AH
Akai Haruma
Giáo viên
17 tháng 11 2021

Lời giải:

$(x^3-2xy+3x^2)(x-2y)=x(x^2-2xy+3x)(x-2y)$

25 tháng 9 2021

a) \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)-4=\left(x^2+6x+5\right)\left(x^2+6x+8\right)-4\)

Đặt \(t=x^2+6x+5\)

\(PT=t\left(t+3\right)-4=t^2+3t-4=\left(t-1\right)\left(t+4\right)\)

Thay t: \(PT=\left(x^2+6x+5-1\right)\left(x^2+6x+5+4\right)=\left(x^2+6x+4\right)\left(x^2+6x+9\right)=\left(x^2+6x+4\right)\left(x+3\right)^2\)

b)  Đặt \(t=\left(2x+1\right)^2\)

\(PT=t^2-3t+2=\left(t^2-3t+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(t+\dfrac{3}{2}\right)^2-\dfrac{1}{4}=\left(t+1\right)\left(t+2\right)\)

Thay t:

\(PT=\left[\left(2x+1\right)^2+1\right]\left[\left(2x+1\right)^2+2\right]=\left[4x^2+4x+2\right]\left[4x^2+4x+3\right]=2\left[2x^2+2x+1\right]\left[4x^2+4x+3\right]\)

22 tháng 10 2017

ta có: \(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x+4\right)^2.\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(\left(x+4\right)^2-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+4-1\right)\left(x+4+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)

Cho mình nhé hihi!!!

22 tháng 10 2017

x2(x+4)2-(x+4)2-(x2-1)

=(x+4)2  (x2-1)-(x2-1)

=(x2-1)(x2+8x+16-1)

=(x-1)(x+1)(x2+8x+15)

18 tháng 10 2021

a) \(2xy-y+6x-3=\left(2xy+6x\right)-\left(y+3\right)=2x\left(y+3\right)-\left(y+3\right)=\left(2x-1\right)\left(y+3\right)\)

b) \(x^2-2xy-x+2y=\left(x^2-2xy\right)-\left(x-2y\right)=x\left(x-2y\right)-\left(x-2y\right)=\left(x-1\right)\left(x-2y\right)\)

26 tháng 11 2021

2x ( x - y ) - 10y ( x - y )

= ( x - y ) ( 2x - 10y )

= ( x - y ) ( 2 . x - 2 . 5y )

= ( x - y ) ( x - 5y ) 2

26 tháng 11 2021

Thanks bn nhiều ạ

23 tháng 9 2017

a) x3-2x2-x+2

=x(x2-1)+2(-x2+1)

=x(x2-1)-2(x2-1)

=(x2-1)(x-2)

b)

x2+6x-y2+9

=x2+6x+9-y2

=(x+3)2-y2

=(x+3-y)(x+3+y)